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Abstract. We propose here a theory of cylindrical stochastic integration, recently
developed by Mikulevicius and Rozovskii, as mathematical background to the the-
ory of bond markets. In this theory, since there is a continuum of securities, it seems
natural to define a portfolio as a measure on maturities. However, it turns out that
this set of strategies is not complete, and the theory of cylindrical integration al-
lows one to overcome this difficulty. Our approach generalizes the measure-valued
strategies: this explains some known results, such as approximate completeness,
but at the same time it also shows that either the optimal strategy is based on a finite
number of bonds or it is not necessarily a measure-valued process.
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1 Introduction

“In the continuous-time bond market model there is naturally a continuum of basic
traded securities (zero-coupon bonds parameterized by their maturities) while in the
standard model of stock market there is normally only a finite number of securities.”

This statement, taken from [2], suggests to accept as admissible (though im-
possible to achieve in real markets) even portfolios containing an infinite number
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of traded securities. This gives rise to the problem of what exactly should be the
meaning of the word “portfolio”, at least in mathematical terms, or what processes
should be considered the relative strategies. It seems natural to consider as a theoret-
ical strategy, to be approximated by real strategies, a stochastic process with values
in a set of measures on the time set (see, for instance, [14]). The question is whether
there exists a satisfactory integration theory, which allows, from a mathematical
point of view, to treat interest rate models like stock market models.

A first answer has been given by Björk et al. [2], who suggest two constructions
of a stochastic integral where the integrator process takes values in the space of
continuous functions and the integrand process (the portfolio strategy) is a measure-
valued process.

In this paper, we address this problem, making use of a recently developed
theory on cylindrical integration, due to Mikulevicius and Rozovskii [9, 10]. In
fact, the construction of this integral gives a precise meaning to such a process,
namely, a portfolio as an integral of measure-valued processes, and it also reveals
that if we consider only measure-valued processes, the space of integrands is not
complete. It is necessary to extend the notion of integrands to some processes
which take values in a Hilbert space, called “covariance space” by Mikulevicius
and Rozovskii.

This also allows to understand well a result due to Björk et al. [2] (see also [3])
which relates uniqueness of the martingale measure to “approximate complete-
ness”, namely, the possibility of approximating every (sufficiently integrable) claim
with a sequence of portfolios based on measure-valued strategies. If the equivalent
martingale measure is unique, a perfect hedging can be obtained by portfolios
based on strategies which take values in the covariance space (this is just a straight-
forward application of Jacod-Yor Lemma, together with an extension of a repre-
sentation theorem of square integrable martingales as stochastic integrals to the
infinite-dimensional setting ).

In some sense, we obtain a negative result: in fact we show that measure-valued
strategies are sufficient to describe all possible portfolios only when the covariance
spaces have finite dimension, and, in this case, all strategies are “true” strategies,
namely, based on a finite number of bonds. Furthermore, the dimension of the
covariance space characterizes the minimal number of bonds (which varies with
(s, ω)) which are in the best portfolio. In particular, if all covariance spaces have
dimension smaller than n, it would be completely useless (in the sense that it cannot
improve the performance of an investor) to have more than n bonds in a portolio.
It should be pointed out, however, that the maturities of these bonds are not fixed,
but depend on (s, ω).

The paper is structured as follows. In Sect. 2, we recall some essential results
from functional analysis: in particular, we illustrate, for the set of continuous func-
tions on an interval, the main results on “reproducing kernels” of Schwartz [15],
which is at the basis of the theory developed by Mikulevicius and Rozovskii. The
Sect. 3 is devoted to briefly describe the main steps which lead to the construction
of the cylindrical stochastic integral, and of a good class of integrands. Once again,
we limit ourselves to the special case, which will be of use in financial applica-
tions, of integrals with respect to martingales in the space of continuous functions.
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In both these sections, we omit (but give precise references) the proofs of theorems
which can be found elsewhere and we develop only the proofs of new results. In
Sect. 4, we apply the previous theory to bond market models, pointing out the con-
sequences of the results we have obtained. Finally, in Sect. 5, we analyze a class
of models introduced by Kennedy [7, 8], who assumes the forward rate curve to
evolve as a Gaussian field: the covariance space can then be characterized uniquely
by the covariance of the Gaussian field. We prove that Kennedy’s model is approx-
imately complete, in the sense that every contingent claim can be approximated by
a sequence of measure-valued portfolios; however, each claim which depends on a
finite number of bonds can be replicated by a portfolio which is based exactly on
those bonds.

We wish to make it clear that this is only the first step in the use of cylindrical
stochastic integration in bond market models: we restrict ourselves to the so called
“martingale modelling” procedure (see, for instance, [1], p. 253), since we at the
present can only deal with (locally square integrable) infinite-dimensional martin-
gales. To proceed further, it would be, for instance, really important to clarify the
notion of “cylindrical semimartingale”.

2 Preliminaries on functional analysis

Let X be a compact metric space. Consider the space C = C(X) of continuous
functions on X with the topology of uniform convergence; its topological dual is
the space M = M(X) of Radon measures on X , provided with the weak topology
σ(M, C) with respect to which M is separable.

According to the terminology of [15], a kernel Q̄ on C is a linear weakly contin-
uous (hence continuous) function from M to C. Denote by L+(M, C) the space of
symmetric, non-negative definite kernels from M to C, namely, the kernels Q̄ such
that for all µ, ν ∈ M, 〈µ, Q̄ν〉 = 〈ν, Q̄µ〉 and 〈µ, Q̄µ〉 ≥ 0, where 〈 , 〉 denotes
the canonical duality bilinear form.

Let Q̄ ∈ L+(M, C): the reproducing kernel generated by Q̄ is the function
Q : X × X → IR, defined by:

Q(x, y) = 〈δx, Q̄δy〉.
Denote by K+(X) set of symmetric, non-negative definite functions on X × X ,
i.e. the functions F : X × X → IR such that F (x, y) = F (y, x) for all x, y ∈ X
and

∑
i≤d ciF (xi, xj)cj ≥ 0 for all x1, . . . , xd ∈ X, c1, . . . , cd ∈ IR, d ∈ IN.

Then, it is easy to see that Q ∈ K+(X). Furthermore, the function Q is separately
continuous and bounded on X × X .

Conversely, let Q ∈ K+(X) be separately continuous, continuous on the diag-
onal and bounded; then, it is jointly continuous (see [15] for details). We can define
a kernel Q̄ ∈ L+(M, C) by setting

Q̄µ(·) =
∫

X

µ(dx)Q(x, · );

then, obviously, 〈ν, Q̄µ〉 =
∫

X
ν(dy)

∫
X

µ(dx)Q(x, y).
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For a given kernel Q̄ ∈ L+(M, C), a scalar product on Q̄(M) can be defined
by:

(Q̄µ, Q̄ν) = 〈µ, Q̄ν〉 = 〈ν, Q̄µ〉. (1)

Proposition 2.1 ([15], Proposition 10) The set Q̄(M) admits a (unique) comple-
tion HQ in C, with respect to the norm induced by (1). This completion HQ is a
separable Hilbert space and can be continuously embedded in C.

A mapping is thus defined from L+(M, C) to the set of Hilbert subspaces of
C. It was proved by Schwartz ([15], Sects. 5–6) that it is in fact an isomorphism; in
particular, each Hilbert subspace in C, more precisely, each Hilbert space which can
be continuously embedded in C, is the image by a proper kernel Q̄ ∈ L+(M, C).

Remark Let Q be the reproducing kernel generated by Q̄: it is a symmetric and
non-negative definite function on X × X , hence it is the covariance of a Gaussian
process ([12], Proposition I.3.7). We then notice that HQ is a well-known object: it
is the reproducing kernel Hilbert space associated to the covariance Q ([12], pp. 37–
38), namely, HQ is the Hilbert space of functions on X , which is the closure of the
subspace spanned by {Q(x, · ), x ∈ X} (with respect to the topology induced by
(1)) and it is such that (h, Q(x, · ))HQ

= h(x), for every h ∈ HQ.

For the sake of simplicity, we will use the same notation for Q and Q̄: it will be
clear from the context whether Q refers to the element of L+(M, C) or of K+(X).

Example 2.1 Let Q be of the form Q(x, y) =
∑

i≤n ai(x)ai(y) with ai ∈ C. If the
functions ai are linearly independent, then HQ = span(a1, . . . , an).

Let us consider in detail the case n = 2. Because of linear independence, we
can find µ1, µ2 ∈ M such that

∫
aidµi = 1,

∫
aidµj = 0 for i, j = 1, 2, i �= j.

Then
ai = Qµi, (a1, a2)HQ

= 0, |ai|2HQ
= 1.

Furthermore, for any µ ∈ M, we have

Qµ(·) = a1(·)
∫

a1dµ + a2(·)
∫

a2dµ

which means that Qµ ∈ span(a1, a2), and |Qµ|2HQ
=
(∫

a1dµ
)2 +

(∫
a2dµ

)2
.

One can also prove the converse, which however will not be used in this
paper: when the space HQ has dimension n, then Q has the form Q(x, y) =∑

i≤n ai(x)ai(y) where ai are continuous and linearly independent functions.

Example 2.2 Let X = [0, 1] and Q(x, y) = min(x, y), the covariance of the Wiener
process. In this case ([12], pp. 20–21, 37–38), the set HQ is the subspace of C of
functions h such that h(0) = 0, h is absolutely continuous and its derivative h′

exists a.e. and belongs to L2(0, 1); furthermore, |h|2HQ
= |h′|2L2(0,1).

Indeed, given µ ∈ M,

Qµ(y) =
∫ 1

0
µ(dx) min(x, y) =

∫ y

0
du µ(u, 1] = h(y)
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where h′(y) = µ(u, 1], h(0) = 0;

|Qµ|2HQ
= 〈Qµ, µ〉 =

∫ 1

0
µ(dy) Qµ(y) =

∫ 1

0
du (µ(u, 1])2 = |h′|2L2(0,1)

and moreover in general, for ν ∈ M, g′(u) = ν(u, 1], g(0) = 0, (Qµ, ν) =
(h′, g′)L2(0,1).

The set HQ is isomorphic to the subspace H̃1 of the usual Sobolev space
H1(0, 1) = W 1,2(0, 1) (see, for instance, [4]) of functions which vanish at 0. In
particular it contains H1

0 (0, 1).
It is not difficult to check that, if we consider Q(x, y) = 1 + min(x, y), we get

Qµ(y) = µ([0, 1]) +
∫ y

0
du µ(]u, 1]).

In this case HQ is exactly H1.

The kernel Q : M → C is in fact a mapping from M to HQ and Q(M) is
dense in HQ. We want to investigate when Q(M) is exactly HQ. For instance, this
happens in Example 2.1, but not in Example 2.2: in the latter case Q(M) consists
of all functions f such that f(x) =

∫ x

0 g(t)dt where g has bounded variation, and
hence it is strictly contained in HQ.

It is easy to see that when HQ has finite dimension, then Q(M) = HQ. We
will show that, if Q is continuous (which, however, happens in most interesting
examples), the converse is also true.

Theorem 2.2 Assume that Q is continuous and Q(M) = HQ. Then dim HQ <
∞.

Proof Consider M endowed with the total variation norm: the kernel Q is lin-
ear, continuous and onto HQ. By theorem of Stone-Weierstrass, each continuous
function Q ∈ K+(X) can be uniformly approximated by functions of the form∑

i≤n ai(x)ai(y), with ai ∈ C. The kernel Q is a limit of a sequence of operators
of finite rank, hence it is compact (see, for instance, [4]).

By the open mapping theorem ([4], Theorem II.5), for some ε > 0, we have
εBH ⊂ Q(U), where BH is the closed unit ball in HQ and U is the closed unit
ball in M (with respect to total variation norm). Since Q is compact, Q(U) is a
compact set in HQ. It follows that also BH is compact in HQ and, thus, HQ has
finite dimension ([4],Theorem VI.5). 	


In Example 2.2, we have seen that HQ can be equal to H1. In general, this does
not happen: if Q is sufficiently regular, then HQ is a proper subspace in H1 (and,
as an obvious consequence, the dual of H1 is contained in H ′

Q). In particular, the
following result holds ([15], Proposition 25):

Proposition 2.3 If the kernel Q is C1(X × X), then the embedding of HQ in
C1(X) is compact.

Since C1(X) is continuously embedded in H1, it follows that also the embed-
ding of HQ in H1 is compact.



92 M. De Donno, M. Pratelli

3 Integration with respect to a cylindrical martingale
in the space of continuous functions

In this section, we shall recall briefly the theory developed by Mikulevicius and
Rozovskii [9, 10], adapted to our particular setting. We refer to [6] for all basic
definitions and notations.

Given a topological vector space E and its topological dual E′, the pair (E, E′)
is called a Schwartz pair if E is locally convex and quasi-complete (i.e., all closed
and bounded subsets of E are complete) and E′ is weakly separable (see Defini-
tion 2.1 in [10]).

Suppose given a filtered probability space (Ω, F , (Ft)t∈[0,T ], P) satisfying the
usual assumptions and denote by P the predictable σ-field. We denote by H2(P)
(resp. H2

loc(P)) the set of square integrable martingales (resp. locally square inte-
grable martingales).

A cylindrical process in E is a linear mapping on E′ with values in a proper
set of stochastic processes. In particular, a locally square integrable cylindrical
martingale in E is a linear mapping M : E′ → H2

loc(P).
Let X be as in the previous section and denote by B(X) the Borel σ-algebra

on X . Consider a family
(
(Mx

t )t∈[0,T ]
)
x∈X

of locally square integrable martingales
(for all x ∈ X , Mx ∈ H2

loc(P)) and we make the following assumption:

Assumption 3.1 There exist an increasing predictable process At and a function
Q defined on Ω × [0, T ]×X ×X , measurable with respect to P ⊗B(X)⊗B(X),
such that:

(i) the function Qs,ω is in K+(X) and is continuous, for all (ω, s) ∈ Ω × [0, T ];
(ii) the function

∫ t

0 Qs,ωdAs(ω), is in K+(X) and is continuous, for all (ω, s) ∈
Ω × [0, T ];

(iii) for fixed x, y ∈ X , for all t ∈ [0, T ],

< Mx, My >t (ω) =
∫ t

0
Qs,ω(x, y)dAs(ω) for P-a.e. ω.

We can define a linear mapping on the set of linear combinations of Dirac
measures, which we denote by D: for µ =

∑
i≤n ciδxi , we set

M(µ) = Mµ
t =

∑
i≤n

ciM
xi
t . (2)

The process M(µ) is a locally square integrable martingale; in fact the mapping
M can be extended to a cylindrical martingale in C. The pair (C, M) is a Schwartz
pair; furthermore, Mikulevicius and Rozovskii proved ([9], Lemma 41) that for all
ν ∈ M, there exists a sequence νn ∈ D and a process Mν ∈ H2

loc(P) such that

sup
0≤t≤T

|Mν
t − Mνn

t | +
∫ T

0
〈ν − νn, Qs(ν − νn)〉 dAs

P−→ 0 (n → ∞)

and < Mµ, Mν >t=
∫ t

0 〈Qsµ, ν〉dAs, for all µ, ν ∈ M.



On the use of measure-valued strategies in bond markets 93

The mapping M can be extended to a mapping on M, still denoted by M,
with values in H2

loc(P), and such that M(ν) = Mν for ν ∈ M , where Mν is
defined as above. Thus, M is a locally square integrable cylindrical martingale in
C. According to the terminology of Mikulevicius and Rozovskii, the kernel Q is
called covariance operator function, while the kernel

∫
QdA is called predictable

quadratic variation for the cylindrical martingale M.
Our aim is to give a sense of an integral of the form

∫
FdM, hence to find a

proper class of integrands. We shall follow the procedure of the construction due
to Mikulevicius and Rozovskii. Let ν be a process with values in M of the form:

νt(ω) =
d∑

i=1

f i
t (ω)µi (3)

where µi ∈ M and f i are predictable bounded processes. Then, we set:

It(ν) =
∫ t

0
νsdMs =

d∑
i=1

∫ t

0
f i

sdMµi
s ; (4)

Then I(ν) is a locally square integrable martingale and its predictable quadratic
variation is given by the formula:

< I(ν), I(ν) >t =
∫ t

0
〈νs, Qsνs〉 dAs.

We denote by L2(M, M) the set of processes ν such that ν takes values in M, and
is predictable, in the sense that for all f ∈ C the process 〈νs, f〉 is predictable, and

IE

[∫ T

0
〈νs, Qsνs〉 dAs

]
< ∞. (5)

The processes of the form (3) are dense in L2(M, M), with respect to the norm
(5). Then the map I defined by (4) can be uniquely extended to the set L2(M, M),
and by stopping also to the set L2

loc(M, M), which is defined in the natural way.
This extension, still denoted by ν → I(ν), is linear, I(ν) ∈ H2

loc(P) and

< I(ν), I(µ) >t=
∫ t

0
〈νs, Qsµs〉dAs

for all ν, µ ∈ L2
loc(M, M). Furthermore, if νn, ν ∈ L2

loc(M, M), and∫ t

0
〈νn

s − νs, Qs(νn
s − νs)〉 dAs

P−→ 0, (n → ∞)

then,
sup
s≤t

|Is(νn) − Is(ν)| P−→ 0 (n → ∞).

This construction is however not satisfying since L2(M, M) is not complete with
respect to the norm defined by (5): a Cauchy sequence νn in L2(M, M) does
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not necessarily converge to an element of that space. However, if νn is a Cauchy
sequence in L2(M, M), then I(νn) converges in H2(P) to some square integrable
martingale. In order to describe the limit process, we need to complete the set
L2(M, M).

Let Q be the covariance operator function for the cylindrical martingale M. For
fixed (ω, t), Qt,ω is in L+(M, C): by Proposition 2.1, there exists a unique Hilbert
space Ht,ω, which can be continuously embedded in C and which is the completion
of the set Qt,ω(M) with respect to the norm induced by the scalar product:

(Qt,ωµ, Qt,ων) = 〈µ, Qt,ων〉.
In this way, we build a family (Ht,ω)(t,ω)∈[0,T ]×Ω of Hilbert subspaces in C, which
is called the family of covariance spaces for the cylindrical martingale M.

Let h be a process on Ω × [0, T ], such that ht(ω) ∈ Ht,ω for all (t, ω); we say
that h is predictable if the process (ω, t) �→ (ht(ω), Qt,ωµ)Ht,ω is predictable, for
any µ ∈ M.

We define the set

L̂2(M, H) =

{
h predictable : IE

[∫ T

0
|hs|2Hs

dAs

]
< ∞

}

which is clearly a Hilbert space; the set L̂2
loc(M, H) can be defined in the natural

way. A mapping Q from L2
loc(M, M) to L̂2

loc(M, H) can be defined by associating
to the process ν, the process h such that ht(ω) = Qt,ωνt(ω) for all (t, ω). A new
type of integral, called normalized integral, can be defined on Q(L2

loc(M, M)), by
setting ∫

h ∗ dM =
∫

νdM

for h = Q(ν). The set Q(L2
loc(M, M)) is dense in L̂2

loc(M, H) and the closure
of L2

loc(M, M) is isometric to the space L̂2
loc(M, H), which is complete ([9],

Proposition 10). It seems natural then to take this set as completion of the set of
integrands: for all h ∈ L̂2

loc(M, H), there exists a sequence νn ∈ L2
loc(M, M)

such that ∫ t

0
|Qsν

n
s − hs|2Hs

dAs
P−→ 0 (n → ∞) (6)

In particular, the sequence νn
s is a Cauchy sequence in L2

loc(M, M) and, as a
consequence, the sequence I(νn) is a Cauchy sequence in H2

loc(P). We denote the
limit of this sequence by

∫
h ∗ dM.

Remark The kernel Q : M → C can be continuously extended to the canonical
isomorphism from H ′ to H , where H ′ is the topological dual of H . Moreover
H ′ is the completion of the set M/ker Q with respect to the norm induced by
the scalar product (µ, ν)H′ = 〈µ, Qν〉. Then, denoting by L2

loc(M, H ′) the set
of processes F which satisfy a weak predictability condition and such that the

process
(∫ t

0 |Fs|2H′
s
dAs

)
t≤T

are locally integrable, it turns out that the closure
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of L2(M, M) is exactly L2(M, H ′) and the mapping Q can be extended to an
isomorphism from L2(M, H ′) to L̂2(M, H).

Example 3.1 Consider the Brownian sheet (Wiener noise in space and time) W =
(W x

t )(t,x)∈[0,T ]×[0,1], namely, the Gaussian process with covariance:

Cov(W x
t , W y

s ) = min(x, y) min(s, t).

We take X = [0, 1]; then, W can be viewed as a cylindrical martingale on C(X),
on the time set [0, T ]. It is easy to see that, for x, y ∈ X ,

d < W x, W y >t= min(x, y) dt.

Hence, if we takeAt = t, we find thatQ is as in Example 2.2. The set of (normalized)
integrands consists in all predictable C-valued functions h, such that hs,ω(0) = 0,
h′

s,ω ∈ L2(0, 1) and ∫ T

0
|h′

s|2L2(0,1)dAs < ∞.

When h = Q(ν) for some ν ∈ L2(W, M), namely, h′
s,ω(x) = νs,ω(x, 1], we

have ∫ t

0
hs ∗ dWs =

∫ t

0
νsdWs =

∫ t

0

(∫ 1

0
νs(dx)dW x

s

)
.

If (Nt)t≤T is a compensated Poisson process, with intensity 1, independent of W x

for all x, the cylindrical martingale Mx
t = Nt +W x

t admits as covariance operator
function Qs,ω(x, y) = 1 + min(x, y) and as covariance space H1(0, 1), hence:

L̂2
loc(M, H) =

{
h predictable :

∫ T

0
|hs|2H1dAs < ∞ P-a.s.

}
.

We also notice that in this case, for all s, Hs = H1(0, 1) = IR ⊕ H̃1 (where H̃1

has been defined in Example 2.2) and consequently H ′
s = IR ⊕ (H̃1)′. Hence an

integrand can be viewed, for the normalized integral, as a pair k = (α, h) with α
predictable IR-valued process and h predictable and H̃1-valued, or equivalently,
for the standard integral, as G = (α, F ), where F is predictable and (H̃1)′-valued
and: ∫ t

0
ks ∗ dMs =

∫ t

0
αs dNs +

∫ t

0
hs ∗ dWs

=
∫ t

0
αs dNs +

∫ t

0
Fs dWs =

∫ t

0
Gs dMs.

We denote by S(M) the stable subspace generated by M in the set of square
integrable martingales, that is, the smallest closed set in H2(P), stable for stochastic
integration and containing all the Mx, possibly stopped (see, for instance, [11]).
Then, the normalized integral is an isometry on S(M).

Though the following result is not explicitly stated by Mikulevicius and Ro-
zovskii, it is just an extension to the infinite-dimensional case of the characterization
of stable subspaces ([5], Theorem 4.35):
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Proposition 3.1 Each N ∈ S(M) can be represented in the form:

Nt = N0 +
∫ t

0
hs ∗ dMs (7)

for some predictable h such that IE
[∫ T

0 |hs|2Hs
dAs

]
< ∞.

We have seen that, in general, the set Q(M) is a proper subset of H .
Thus, we cannot expect to obtain a representation of any element of S(M) as

integral of a measure-valued process. This may however happen in some cases,
depending on the structure of the covariance spaces.

Theorem 3.2 Assume that for all (s, ω), dim H(s, ω) = n(s, ω) < ∞. Then any
N ∈ S(M) can be written in the form:

Nt = N0 +
∫ t

0
νsdMs (8)

where νs(ω) is a measure on X with finite support and the cardinality of the support
is exactly n(s, ω).

The proof of this theorem is given in the appendix.

4 Applications to “bond markets”

We consider a model of bond markets based on a family of optional processes
(P ( · , T ))T≤T ∗ , which represent the bond prices for all maturities T . For basic
definitions, assumptions and notations we refer mainly to [14] and [1]. Furthermore,
we assume that F0 is the trivial σ-algebra.

We define the bank account Bt = exp
(∫ t

0 rsds
)

, where r is the short rate

process, and denote by P (t, T ) the discounted bond process P (t, T )/Bt.
The process P (t, T ) is defined only for t ≤ T . To work with processes which are

defined for all t, we set P (t, T ) = exp
(∫ t

T
rsds

)
for t > T , as already suggested

in [2]. In economic terms, this means that we suppose that the owner of a zero
coupon bond invests the money received at the bond maturity in the bank account.

In a bond market, unlike in a stock market, an investor can choose among a
“continuum” of traded securities. For this reason, Björk et al. [2] suggest considering
as possible strategies “measure-valued” processes; a rigorous definition can be
found in [14] (Definition VII.5.2). According to this definition, a strategyπ = (β, γ)
in a bond market consists of two processes:

(i) a predictable process (βt)t≤T ∗ , which represents the quantity invested in the
money market account;

(ii) a family of Radon measures (γt)t≤T ∗ such that for all (t, ω), (γt(dT )) is a
measure on B([0, T ∗]), with support concentrated on [t, T ∗] and for all B ∈
B([0, T ∗]), the process (γt(B))t≤T ∗ is predictable; γt(dT ) can be interpreted
as the “number” of bonds with maturity date in the interval [T, T + dT ].
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The value of the portfolio generated by such a strategy is described by the
process

V π
t = βtBt +

∫ T ∗

t

P (t, T )γt(dT ).

The self-financing condition takes the form

dV π
t = βtdBt +

(∫ T ∗

t

dP (t, T )γt(dT )

)
(9)

in a symbolic notation which needs to be given a certain meaning. In [14], an
interpretation of this expression is given in the HJM framework. Björk, Kabanov,
Runggaldier give a mathematical interpretation to (9) in [3] in the case of bonds
driven by a marked point process (see also Example 4.2).

For the general definition, it seems to be necessary to have a stochastic integral
for measure-valued processes with respect to a process with values in the set of
continuous functions. In order to apply the results of the previous section, we need
the following assumption:

Assumption 4.1 There exists an equivalent martingale measure for the bond mar-
ket, namely, a measure P̃, equivalent to P, such that for every fixed T ∈ [0, T ∗], the
discounted bond price process (P (t, T ))0≤t≤T ∗ is a local martingale under P̃.

The process P ( · , T ) is not necessarily a true martingale (the interest rate may
take negative values). However, we assume that P ( · , T ) is locally bounded, and,
since Bt is continuous and strictly positive, for all T , P ( · , T ) is a locally square
integrable martingale.

Set X = [0, T ∗]: we assume the existence of predictable processes At and Qt,
which satisfy Assumption 3.1, so that for all T1, T2 ∈ X

d < P ( · , T1), P ( · , T2) >t (ω) = Qω,t(T1, T2)dAt(ω).

Notice that this requirement is fulfilled by all known models. We also observe that
when min(T1, T2) ≤ t, then Qω,t(T1, T2) = 0.

We can associate to the family (P ( · , T ))T≤T ∗ a cylindrical martingale P in
C. The theory developed in the previous section permits us to give a meaning to
the integral of a measure-valued process, independently of the model. So, we can
formulate the self-financing condition for a discounted portfolio, generated by a
measure-valued strategy:

Definition 4.1 A strategy π = (β, γ) such that γ ∈ L2
loc(P, M), is self-financing

if the discounted portfolio value V
π

t = V π
t /Bt satisfies the condition:

V
π

t = V π
0 +

∫ t

0
γs dPs.
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The self-financing condition and the initial value of the portfolio uniquely deter-
mine the value of the money holding β. So we will specify a self-financing portfolio
by the pair (V0, γ).

We can give a financial interpretation to the results we have obtained in the
previous sections. We assume that the filtration is generated by the processes
(P ( · , T ))T≤T ∗ .

A contingent claim is an element of L2(F , P̃), that is, a square integrable random
variable, with respect to the equivalent martingale measure, and measurable with
respect to F . We then introduce the following definition:

Definition 4.2 A claim C is attainable if there exist V0 ∈ IR and γ ∈ L2(P, M),
such that

C

BT ∗
= V0 +

∫ T ∗

0
γs dPs.

From Theorem 2.2 and Proposition 3.1, it follows that the space of measure-
valued strategies may be not satisfactory when discussing of hedging portfolios
and completeness: we can find a sequence of measure-valued portfolios which
converges in the set of locally square integrable martingales, but the limit process
cannot be represented as a measure-valued portfolio. This means that measure-
valued strategies are not sufficient to describe all possible portfolios in the market.
For this reason we give a new notion of attainability (see also [2]):

Definition 4.3 A claim C is asymptotically (or approximately) attainable if there
exist V0 ∈ IR and h ∈ L̂2(P, H) such that

C

BT ∗
= V0 +

∫ T ∗

0
hs ∗ dPs.

This means that there exists a sequence of self-financing measure-valued port-
folios V n such that V

n

T ∗ converges to C/BT ∗ in L2(F , P̃).
In the given representation, h may not be the image of a measure, but Theo-

rem 3.2 implies the following result:

Theorem 4.1 Let C be an asymptotically attainable contingent claim. Assume that
all the covariance spaces associated to Q have finite dimension: then, there exists a
replicating strategy which is, in each point, a finite combination of Dirac measures.

Note that the replicating portfolio may involve a continuum of bonds.

Remark One might imagine that the good strategy is the strategy based on integrands
with values in

(
H1(0, T ∗)

)′
, but this is not possible. In fact, Q usually satisfies the

assumptions of Proposition 2.3, hence for all (s, ω), the embedding of Hs,ω in
H1(0, T ∗) is compact and this implies that

(
H1(0, T ∗)

)′
is a proper subspace of

H ′
s,ω .
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Example 4.1 Stochastic volatility models Assume that the zero coupon bond pro-
cess evolves, under an equivalent martingale measure, according to a dynamics of
the form:

dP (t, T ) = P (t, T )

(
r(t)dt +

n∑
i=1

σi(t, η, T )dW i
t

)
where W i are independent Wiener processes and η is an element of some mea-
surable space (E, E) (usually η is a stochastic process). Such models are called
stochastic volatility models, driven by an n-dimensional Wiener process.

Computing the quadratic variation of the discounted process, we obtain:

d < P ( · , T1), P ( · , T2) >t= P (t, T1)P (t, T2)

(
n∑

i=1

σi(t, η, T1)σi(t, η, T2)

)
dt.

Then, omitting ω for simplicity, we can set

At = t Qt(T1, T2) = P (t, T1)P (t, T2)
n∑

i=1

σi(t, η, T1)σi(t, η, T2).

We assume tha σi(t, η, · ) is continuous for all fixed (t, η); then, Q has the same
structure as in Example 2.1 and for all (t, ω), the associated covariance space has
dimension less than or equal to n.

In most cases, these models are not complete. Theorem 4.1 tells us that for an
investor it is not worthwhile to use at each point the whole rate curve, in the sense
that the best performance can be obtained by a portfolio which, at each point (t, ω),
has n bonds with different maturities and any more bond in the portfolio does not
improve the replicating possibilities.

Example 4.2 Bond market in presence of marked point processes Consider a market
where the bond prices are allowed to be driven by an n-dimensional Wiener process
as well as a marked point process. This model has been carefully analyzed by Björk
et al. ([3], p. 224), and we refer to them for assumptions and notations. They proved
that, under an equivalent martingale measure, the discounted bond price dynamics
is given by

dP (t, T ) = P (t−, T )

(
n∑

i=1

Si(t, T )dW i
t +

∫
E

(
eD(t,x,T ) − 1

)
µ̃(dt, dx)

)

where W i are independent Wiener processes, µ̃(dt, dx) = µ(dt, dx) − λt(dx)dt
is a compensated marked point process on (E, E) (which is assumed to be a Lusin
space) and λ is the intensity of µ under an equivalent martingale measure. The
quadratic variation is:

d < P ( · , T1), P ( · , T2) >t = P (t−, T1)P (t−, T2)

[
n∑

i=1

Si(t, T1)Si(t, T2)

+
∫

E

(
eD(t,x,T1) − 1

)(
eD(t,x,T2) − 1

)
λt(dx)

]
dt.
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Dropping t and ω, we can represent Q as follows:

Q(T1, T2) =
n∑

i=1

αi(T1)αi(T2) +
∫

E

β(x, T1)β(x, T2)λ(dx).

When λ is not concentrated at a finite number of points, the covariance space
associated with Q has infinite dimension, and all possible strategies cannot be
obtained using only measure-valued processes.

Our result allows us to explain the notion of “approximate completeness” and
its relation with uniqueness of the martingale measure. We recall that a market is
said to be complete if every contingent claim is attainable. In this setting, we need
to extend this notion of completeness:

Definition 4.4 The market is approximately (or asymptotically) complete if all
claims are asymptotically attainable.

Theorem 4.2 If the martingale measure is unique, then the market is approximately
complete.

Proof By Proposition 3.1 and the well-known Jacod-Yor Lemma (see e.g., [5],
Chap. XI), when the martingale measure is unique, each square integrable random
variable C has a representation of the form

C = IE
P̃
[C] +

∫ T ∗

0
hs ∗ dPs,

whereh ∈ L̂2(P, H). In other words, any claim is asymptotically attainable. Hence,
the market is approximately complete. 	


This result has already been proved, with different techniques, by Björk et al.
([3], Proposition 4.7) and Björk et al. ([2], Proposition 6.11), for the the model
considered in Example 4.2. As for the converse part, if the market is approximately
complete, we can only deduce that the equivalent martingale measure is extremal
in the set of all martingale measures. In [3], it is also shown that, in the case of
Example 4.2, when λ is concentrated at a finite number of points, completeness
and approximate completeness coincide. This is, in fact, the case where all the
covariance spaces associated to Q have finite dimension. In this case, completeness
is equivalent to uniqueness of the martingale measure.

A relation can be established between approximate completeness and complete-
ness on a special set of claims.

Definition 4.5 We say that a contingent claim C is a finite (market observable) con-
tingent claim if there exists an integer d and maturities T1 < . . . < Td such that C is
measurable with respect to the σ-algebra generated by the process (P ( · , Ti))i≤d.

We shall see in the next section that, in the class of (infinite-dimensional) models
introduced by Kennedy [7], such contingent claims can be hedged.
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Theorem 4.3 The market is approximately complete if and only if every finite
contingent claim is asymptotically attainable.

Proof Necessity is trivial. As for the converse part, it is not difficult to see (for
instance by a Monotone Class Theorem) that the set of finite contingent claims is
dense in L2(F , P̃), that is in the set of all contingent claims. 	


5 Kennedy’s model

We focus our attention on the forward-rate curve, assuming, for the sake of sim-
plicity, that T ∗ = 1. Kennedy [7, 8] models the instantaneous forward rate
{F (t, T ) : 0 ≤ t ≤ T ≤ 1} as a Gaussian field with independent increments
in the t-direction. In particular, F has the form:

F (t, T ) = α(t, T ) + Y (t, T ), 0 ≤ t ≤ 1

where α is deterministic and continuous in t; Y (t, T ) is a centered continuous
Gaussian random field with covariance structure specified by

Cov (Y (t1, T1), Y (t2, T2)) = c(t1 ∧ t2, T1, T2), 0 ≤ ti ≤ Ti, i = 1, 2,
(10)

where c is symmetric and non-negative definite in (T1, T2) and c(0, T1, T2) = 0.
The dependence of c on t1 ∧ t2 ensures the independent increments property for
Y in the t-direction: that is, the increment Y (t2, T ) − Y (t1, T ) is independent of
Ft1 = σ{Y (u, v), u ≤ t1, u ≤ v}, when t1 ≤ t2 ≤ T .

The zero-coupon bond price process at time t is given by:

P (t, T ) = exp

(
−
∫ T

t

F (t, s)ds

)
;

the short rate is rs = F (s, s)). Kennedy proved ([7], Theorem 1.1) that the dis-
counted bond price P (t, T ) is a martingale for all T if and only if

α(t, T ) = α(0, T ) +
∫ T

0
c(t ∧ s, s, T )ds.

We work directly under the martingale measure P̃. The discounted bond P (t, T )
has the form ζ(t, T ) exp(D(t, T )), where ζ(t, T ) is a deterministic function, and

D(t, T ) = −
∫ T

t

Y (t, s)ds −
∫ t

0
Y (s, s)ds. (11)

The process D( · , T ) is a martingale for all T and

dD(t, T ) =
1

P (t, T )
dP (t, T ). (12)
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Indeed, for t1 < t2 ≤ T ,

D(t2, T ) − D(t1, T ) = −
∫ T

t2

(Y (t2, s) − Y (t1, s)) ds

−
∫ t2

t1

(Y (s, s) − Y (t1, s)) ds.

Taking the conditional expectation with respect to Ft1 on both sides and exchanging
the conditional expectation operator with the integral, we find that the right-hand
side is zero; hence, IE [D(t2, T ) − D(t1, T )|Ft1 ] = 0 and D( · , T ) is a martingale.
Moreover, by Ito’s formula, we have

dP (t, T )

= eD(t,T )
(

dζ(t, T ) + ζ(t, T )dD(t, T ) +
1
2
ζ(t, T )d < D( · , T ), D( · , T ) >t

)
.

Since P (t, T ) is a martingale, the sum of all finite variation terms vanishes: it
follows that dP (t, T ) = P (t, T )dD(t, T ) or equivalently (12).

Lemma 5.1 Let M be a continuous positive martingale, such that Mt = as,tMs

for s ≤ t, where as,t is independent of Fs. Set Nt =
∫ t

0 M−1
s dMs and assume

N to be square integrable. Then N is a continuous martingale with independent
increments and the process < N, N > is deterministic.

Proof The process N is a continuous martingale. The increment

Nt − Ns =
∫ t

s

M−1
u dMu

is the limit of processes of the form
∑

ti∈πn
M−1

ti−1
(Mti −Mti−1), where (πn)n is a

sequence of finite partitions of [s, 1], such that mesh(πn) tends to 0. By hypothesis,∑
ti∈πn

M−1
ti−1

(Mti − Mti−1) =
∑

ti∈πn
(ati−1,ti − 1); these random variables

are independent of Fs and so is their limit. Finally, a square integrable continuous
martingale N , with independent increments, has deterministic predictable quadratic
variation: notice that this is just < N, N >t= IE

[
N2

t

]
. 	


For all T , the process P ( · , T ) satisfies the hypotheses of the lemma: it is
continuous and P (t, T ) = as,tP (s, T ), where

as,t = exp
(

−
∫ t

s

(α(u, u) − α(s, u)) du −
∫ t

s

(Y (u, u) − Y (s, u)) du

)
· exp

(
−
∫ T

t

(α(t, u) − α(s, u)) du −
∫ T

t

(Y (t, u) − Y (s, u)) du

)
.

Clearly, as,t is independent of Fs, since for all u, both Y (u, u) − Y (s, u) and
Y (t, u) − Y (s, u) are independent of Fs. By the lemma, < D( · , T ), D( · , T ) >t

is deterministic and is explicitly computed as a function of the covariance of the
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Gaussian process; the same can be done also with < D( · , T1), D( · , T2) >t

(of course, D(t, T1) + D(t, T2) is a square integrable continuous martingale with
independent increments). Recalling that D(t, T ) is a martingale zero at 0, we have:

< D( · , T1), D( · , T2) >t

= IE [D(t, T1)D(t, T2)] = Cov(D(t, T1), D(t, T2))

=
∫ t

0
du

∫ t

0
ds c(s ∧ u, s, u) +

∫ t

0
du

∫ T1

t

ds c(t ∧ u, u, s)

+
∫ t

0
du

∫ T2

t

ds c(t ∧ u, u, s) +
∫ T1

t

du

∫ T2

t

ds c(t, u, s)

= 2
∫ t

0
du

∫ u

0
ds c(s, s, u) +

∫ t

0
du

∫ T1

t

ds c(u, u, s)

+
∫ t

0
du

∫ T2

t

ds c(u, u, s) +
∫ T1

t

du

∫ T2

t

ds c(t, u, s).

From (12), it follows that

d < D( · , T1), D( · , T2) >t=
d < P ( · , T1), P ( · , T2) >t

P (t, T1)P (t, T2)
.

Suppose that there exist processes Q and A, such that

d < P ( · , T1), P ( · , T2) >t= P (t, T1)P (t, T2) Qt(T1, T2)dAt;

then, we shall have

< D( · , T1), D( · , T2) >t=
∫ t

0
Qs(T1, T2)dAs. (13)

We now impose an additional hypothesis on the covariance function c: we take c
to be of the form

c(t, T1, T2) = f(t)g(T1, T2),

where f is non-decreasing and g(T1, T2) is symmetric and non-negative definite in
(T1, T2). This is the case, for instance, when the random field of forward rates is
Markov, in the sense of [8], Definition 3.3, and satisfies the independent increments
property ([8], Theorem 3.1). Further, we suppose that f is C1(0, 1) with f ′(t) > 0
for all t. Then both sides of (13) are differentiable in t and we easily find, by simple
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computations, that, for all T1, T2 ≥ t:

d

dt

∫ t

0
Qs(T1, T2)dAs

= 2
∫ t

0
ds f(s)g(s, t) + f(t)

∫ T1

t

ds g(t, s) −
∫ t

0
du f(u)g(u, t)

+f(t)
∫ T2

t

ds g(t, s) −
∫ t

0
du f(u)g(u, t) − f(t)

∫ T2

t

du g(u, t)

−f(t)
∫ T1

t

ds g(t, s) + f ′(t)
∫ T1

t

du

∫ T2

t

ds g(u, s)

= f ′(t)
∫ T1

t

du

∫ T2

t

ds g(u, s).

Setting dAt = f ′(t)dt, we obtain

Qt(T1, T2) =
∫ T1

t

du

∫ T2

t

ds g(u, s). (14)

We have thus found A and Q satisfying Assumption 3.1. Let µ belong to M:
there exists an absolutely continuous function h on [0, 1], such that h(0) = 0 and
h′(s) = µ(s, 1] (see, for instance, [12]). If we define k(s) = µ(s, 1], we see that k
is in L2(0, 1) and

Qtµ(y) =
∫ 1

t

µ(dx)Qt(x, y) =
∫ 1

t

µ(dx)
∫ x

t

ds

∫ y

t

du g(s, u)

=
∫ 1

t

ds µ(s, 1]
∫ y

t

du g(s, u) =
∫ 1

t

ds k(s)
∫ y

t

du g(s, u)

and now

〈Qtµ, µ〉 =
∫ 1

t

ds

∫ 1

t

du k(s)k(u)g(s, u).

Example 5.2 Suppose that g(s, u) = b(s)b(u). Then, we have

Qt(T1, T2) =

(∫ T1

t

ds b(s)

)(∫ T2

t

du b(u)

)
= βt(T1)βt(T2).

Hence, the associated covariance space has dimension 1 (see Example 2.1). This is
the case considered by Kennedy in [8], Theorem 3.3, when λ = 2µ.

Example 5.3 Suppose that g(s, u) = s ∧ u. This situation corresponds to the case
where Y is the Brownian sheet and f(t) = t. Let µ belong to M and h and k defined
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as above. Then we can explicitly compute Qtµ and 〈Qtµ, µ〉. For simplicity we
consider t = 0. After some calculations, we obtain:

Q0µ(y) =
∫ 1

0
ds k(s)

∫ y

0
du (s ∧ u)

= −
∫ y

0
ds h(s)s + h(1)

y2

2

=
∫ y

0
dsh̃(s)(y − s)

〈Q0µ, µ〉 =
∫ 1

0
ds k(s)

∫ 1

0
du k(u) (s ∧ u)

=
∫ 1

0
(h(1) − h(s))2ds

= |h̃|2L2(0,1)

where h̃(s) = h(1) − h(s). The covariance space associated to Q is isomorphic to
the closure in L2(0, 1) of the set of continuous functions h̃, such that h̃(1) = 0 and
h̃′ is in L2(0, 1). Since this set contains the space of functions on [0, 1] which are
infinitely differentiable and with compact support, (which is dense in L2(0, 1)), the
set HQ is isomorphic to L2(0, 1), hence it has infinite dimension.

From the previous examples, we see that this class of models includes both
the cases where the covariance space has finite and infinite dimension; in the latter
case, in order to hedge some claims, one may need “theoretical” portfolios, which
are impossible to achieve in a real financial market. The class of finite contingent
claims has an interesting property:

Theorem 5.1 Let C be a finite (market observable) contingent claim, depending on
the bondsP ( · , T1), . . . , P ( · , Td), for somed ∈ IN, for some maturitiesT1 < . . . <
Td. Then, it can be replicated with a portfolio based on B, P ( · , T1), . . . , P ( · , Td).

Proof By definition, C = C/B1 is measurable with respect to the σ-algebra gen-
erated by the IRd-valued martingale D̃ = (D( · , Ti))i≤d. By Lemma 5.1, D̃ is a
continuous martingale with independent increments. Hence, by Theorem III.4.34
in [6], it has the predictable representation property; namely, all square integrable
random variables C, which are measurable with respect to the σ-algebra generated
by D̃, can be written in the form:

C = IE
P̃

[
C
]
+
∫ 1

0
ϕt dD̃t,

for some predictable process ϕ with values in IRd and integrable with respect to
the martingale in D̃. The equality∫ 1

0
ϕtdD̃t =

∫ 1

0

(
ϕ1

t

P (t, T1)
, . . . ,

ϕd
t

P (t, Td)

)
d
(
P (t, T1), . . . , P (t, Td)

)



106 M. De Donno, M. Pratelli

shows that C is an attainable claim and the replicating portfolio is a self-financing
portfolio based only on B, P ( · , T1), . . . , P ( · , Td). 	


We would like to remark that this theorem holds in general, without any assump-
tions on c. What we have proved is that, in this class of models, a claim depending
on a finite number of bonds can be hedged with a portfolio based exactly on those
bonds and the bank account, and this is independent of the number of random
sources which are involved, even when the market contains a continuum of random
sources as, for instance, in the case of the Brownian sheet. Furthermore this result,
together with Theorem 4.3, allows us to state the following:

Theorem 5.2 Kennedy’s bond market is approximately complete.

6 Conclusions

The main purpose of this paper is the development of a mathematical technique,
which permits one to use stochastic integration with respect to a family of “zero-
coupon bonds”, which can be seen as a stochastic process with values in the set of
continuous functions. To this end, we adapt to this particular case the cylindrical
stochastic integration theory introduced by Mikulevicius and Rozovskii in a more
general setting [9, 10]. The class of integrands is interpreted, from a financial point
of view, as the set of all possible strategies in the bond market. Björk et al. [2]
have suggested considering “measure-valued portfolios”; we prove that, in order to
obtain completeness, or even replication of some contingent claims, it is necessary
to consider a larger set of strategies. As an example, we give a detailed analysis of
a model introduced by Kennedy [7, 8]: in this case, we can explicitly characterize
the set of strategies, which usually properly includes measure-valued processes.
However, in this particular example, options depending on a finite number of bonds
P (t, T1), . . . , P (t, Tn) (as, for instance, swaps, caps and floors), can be replicated
by using portfolios which are based on these n bonds and the money market account.
We also prove that this model is complete.

Appendix: Proof of Theorem 3.2

We first observe that a compact metric space X is separable. For the sake of sim-
plicity, we prove the theorem, assuming that X is an interval (this is, in fact, the
only case we consider for applications): in particular, we take X = [0, 1]. The proof
in the general case is easily obtained replacing the set Q ∩ [0, 1] with a countable
dense subset in X .

In the next two lemmas we will use the notations of Sect. 2.

Lemma A.1 Let x1, . . . xn ∈ [0, 1]. The set {Q(xi, · )}i≤n is a basis for HQ (and
dim HQ = n) if and only if the following conditions hold:

(i) det [(Q(xi, xj))1≤i,j≤n] �= 0
(ii) det [(Q(xi, xj))1≤i,j≤n+1] = 0 for all xn+1 ∈ [0, 1].
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Proof Recalling that (Q(x, · ), Q(y, · ))HQ
= Q(x, y), it is easy to check that

conditions (i) and (ii) hold if and only if Q(x1, · ), . . . , Q(xn, · ) are linearly
independent and all h ∈ HQ are of the form h =

∑
i≤n λiQ(xi, · ). 	


Remark When Q is continuous, condition (ii) can be replaced by

(ii′) det [(Q(xi, xj))1≤i,j≤n+1] = 0 for all xn+1 ∈ Q ∩ [0, 1].

Lemma A.2 Assume that Q is continuous and dim HQ = n. Then there exist
x1, . . . xn ∈ [0, 1] ∩ Q such that {Q(xi, · )}i≤n is a basis for HQ.

The proof of this lemma is easily obtained by using the continuity of Q and the
Hilbert-Schmidt orthogonalization procedure. In the two lemmas which follow, we
use the notations of Sect. 3 and suppose that Assumption 3.1 is fulfilled.

Lemma A.3 Assume that dim Hs,ω = n, and that there exist x1, . . . , xn ∈ [0, 1]
such that the set {Qs,ω(xi, · )}i≤n is a basis for Hs,ω , for all (s, ω). Then, S(Mx1 ,
. . ., Mxn) = S(M).

Proof Set Mx = (Mx1 , . . . , Mxn). It will be sufficient to prove that My ∈
S(Mx), for all y ∈ [0, 1]: that is, there exists a measure-valued process ν of the
form ν(s, ω) =

∑
i≤n λi(s, ω)δxi , where λ = (λi)i≤n is a predictable process,

such that the local martingale My has a representation of the type

My =
∫

ν dM,

or, equivalently,

My =
∫

λdMx.

We recall that λ is integrable with respect to the locally square integrable martingale
Mx (and that the stochastic integral is still a locally square integrable martingale)
if and only if the process∑

i,j≤n

∫
λiλj d < Mxi , Mxj >=

∑
i,j≤n

∫
λiλj Q(xi, xj) dA

is locally integrable (see, for instance, [6], Sect. III.4a).
Since Qs,ω(y, · ) ∈ Hs,ω , by Lemma A.2, it can be written in the form

Qs,ω(y, · ) =
n∑

i=1

λi(s, ω)Qs,ω(xi, · )

for some λi. In particular, for all j,

Qs,ω(y, xj) =
n∑

i=1

λi(s, ω)Qs,ω(xi, xj). (15)

In virtue of Lemma A.1, λ is a solution of a system of linear equations with pre-
dictable coefficients, hence, it is predictable.
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Set ν =
∑

i≤n λiδxi and ν̃ = δy − ν. Then, for all (s, ω)

|ν̃(s, ω)|2H′
s,ω

= Qs,ω(y, y) +
n∑

i,j=1

λi(s, ω)λj(s, ω)Qs,ω(xi, xj)

−2
n∑

i=1

λi(s, ω)Qs,ω(xi, xj)

which is zero by (15). This implies that ν̃ is M-integrable and
∫

ν̃dM = 0. Since∫
ν̃ dM = My −

∫
ν dM,

it follows that ν is integrable with respect to M and My =
∫

ν dM =
∫

λ dMx

belongs to S(Mx). 	

Remark For a given predictable set B, we denote by 1B · M the cylindrical mar-
tingale associated to the family (1B · Mx)x∈[0,1] (where, according to a standard
notation, 1B · Mx =

∫
1B dMx).

The previous lemma can be applied, with the proper restrictions to S(1B ·M).

Lemma A.4 Let x1, . . . , xn ∈ [0, 1]. Denote by B(x1, . . . , xn) the set of all (s, ω)
such that {Qs,ω(xi, · )}i≤n is a basis for Hs,ω . Then, B(x1, . . . , xn) is a pre-
dictable set.

Proof The set B(x1, . . . , xn) is the set of all (s, ω) such that

det [(Qs,ω(xi, xj))1≤i,j≤n] �= 0

and
det [(Qs,ω(xi, xj))1≤i,j≤n+1] = 0

for all xn+1 ∈ Q ∩ [0, 1]. Hence, it is predictable. 	

Proof of Theorem 3.2 By Lemma A.2, Ω × [0, T ] is the (countable) union of all
sets B(x1, . . . xn) as defined in Lemma A.4, for n ∈ IN, x1, . . . , xn ∈ [0, 1] ∩ Q.
From this family of sets, we can construct a countable family of predictable and
disjoint sets (Bn)n∈IN, such that Ω × [0, T ] =

⋃
n Bn, and Hs,ω is generated by

some (Qs,ω(xn
i , · ))1≤i≤kn

, xn
i ∈ Q, for all (ω, s) ∈ Bn .

Let N be an element of S(M). Then

Nt =
∫ t

0
hs ∗ dMs =

∑
n∈IN

∫
Bn∩[0,t]

hs ∗ dMs,

for some predictable h such that IE
[∫ T

0 |hs|2Hs
dAs

]
< ∞.

By the remark on Lemma A.3,∫
Bn∩[0,t]

hs ∗ dMs =
∫

Bn∩[0,t]
λn

s dMxn

s
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whereMxn

= (Mxn
1 , . . . , Mxn

kn ) andλn = (λ1, . . . , λkn) is a predictable process,
integrable with respect to 1Bn · Mxn

.
Put νn

s (ω) =
∑kn

i=1 λn
i (s, ω)δxn

i
on Bn, zero otherwise: clearly, νn is integrable

with respect to 1Bn · M, since

IE

[∫
Bn∩[0,T ]

|νn
s |2H′

s
dAs

]
= IE

[∫
Bn∩[0,T ]

|hs|2Hs
dAs

]

≤ IE

[∫ T

0
|hs|2Hs

dAs

]
< ∞.

Thus, the stochastic process ν which coincides with νn on Bn is well-defined and
satisfies the requirements of the theorem, since∫

ν dM =
∑

n

∫
Bn

ν dM =
∑

n

∫
Bn

νndM =
∑

n

∫
Bn

h ∗ dM =
∫

h ∗ dM.
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