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Abstract

We study the problems of super-replication and utility maximization from terminal wealth

in a semimartingale model with countably many assets. After introducing a suitable definition

of admissible strategy, we characterize superreplicable contingent claims in terms of

martingale measures. Utility maximization problems are then studied with the convex duality

method, and we extend finite-dimensional results to this setting. The existence of an optimizer

is proved in a suitable class of generalized strategies: this class has also the property that

maximal expected utility is the limit of maximal expected utilities in finite-dimensional

submarkets. Finally, we illustrate our results with some examples in infinite dimensional factor

models.
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1. Introduction

A financial market is usually modeled as a d-dimensional semimartingale on a
filtered probability space which describes the evolution of the discounted prices of d

financial assets: we will refer to such a model as a small market, using a terminology
introduced by Klein and Schachermayer [13]. The notion of large financial market

was introduced by Kabanov and Kramkov [10] in order to describe a financial
market containing a very large number of traded assets: they consider a sequence of
RdðnÞ-valued semimartingales based on possibly different probability spaces. Several
papers [10–13] investigate different notions of asymptotic arbitrage and also an
extension of the fundamental theorem of asset pricing to the framework of large
markets.
With this approach, a large financial market can be seen as a market where it is

possible to choose a finite number of securities to trade, but a priori this number is
not bounded. If we assume that all the probability spaces coincide, an alternative
approach is to model a large financial market as a market where there is an infinite
(countable) number of different assets available for trading, though in fact a real

portfolio may only include a finite number of them: we will refer to such a real

portfolio as an elementary portfolio.
In this spirit, Björk and Näslund [1] study a continuous time extension of the

classical Arbitrage Pricing Theory (APT) models [18,8]: every asset price process is
driven by a source of randomness, which is common to all assets and represents
the systematic risk in the market, and by a specific (or idiosyncratic) source of
randomness, which affects only that particular asset. They obtain a well diversified

portfolio as the limit of a sequence of portfolios based on the first n assets: this is
evidently an idealized picture of a financial market where we are allowed to trade on
infinitely many assets. The real world counterpart of a well diversified portfolios is for
instance a mutual fund which can contain hundreds of different assets (whereas
usually a small investor can only trade on a very limited number of assets). The main
result of Björk and Näslund is that, under some technical conditions, they can build
a well diversified portfolio which is driven only by the systematic risk and which
completes the small markets.
A more systematic investigation of completeness in large financial markets is the

topic of the paper [3], where a diversifying strategy is represented as a process which
is integrable with respect to the sequence of the price processes. Furthermore, in this
paper, the martingale model is chosen: the asset price processes are martingales, so it
sufficient to adapt the cylindrical stochastic integration theory introduced by
Mikulevicius and Rozovskii [17] to the case of a sequence of martingales.
The aim of the present paper is to investigate further large financial markets (and

in particular the factor models considered by Björk and Näslund) by considering
the problems of super-replication and utility maximization. In order to face these
problems the martingale model is no longer appropriate. It is therefore necessary to
have a theory of stochastic integration with respect to a sequence of semimartingales.
This can be found in [4] and we refer to that paper for all results pertaining to this
stochastic integration theory. We call generalized strategy (as opposed to elementary
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strategy) a process which is integrable with respect to the whole semimartingale
sequence. This notion formalizes the idea of a portfolio in which each asset can
contribute, possibly with an infinitesimal weight.
In Section 2 we describe our model and the class of the admissible strategies.

For a generalized strategy, the proper notion of admissibility cannot refer
uniquely to the limit (generalized) integrand, but has to take into account also a
sequence of approximating elementary strategies: the reason for this is that
the so called Ansel–Stricker theorem is no more valid in this infinite-dimensional
context.
Section 3 gives the main super-replication result. It is well-known that in the small

market based on the first n assets, the super-replication price is given by

pnðX Þ ¼ sup
Q2Mn

e

EQ X½ �,

where Mn
e is the set of the equivalent martingale measures for the first n assets [5,6].

If we assume that there exists at least an equivalent martingale measure for the whole
sequence of the price processes (that is,

T
nX1M

n
ea;), we have an analogous

characterization for the super-replication price with the appropriate definition of
admissible generalized strategies. Clearly, the sequence of the prices (pnðX Þ) is
decreasing: we show with two examples that the limit may be strictly greater than the
super-replication price in the large market.
The dual characterization of the super-replication price paves the way to an

extension of the convex duality approach in order to study the utility maximization

problem in a large market, that is the problem to find

max
H2A

E U x þ

Z T

0

Ht dSt

� �� �
,

where U is a utility function and A the set of admissible generalized strategies. In
Section 4, we show that under suitable assumptions on U, the problem of utility
maximization has an optimal solution and in some cases we are able to give an
explicit characterization of it. Contrary to the case of the super-replication price, we
show that the supremum of the expected utilities over all the elementary strategies
coincides with the supremum over the generalized strategies.
Finally, Section 5 is devoted to the analysis of the infinite-dimensional factor

models considered by Björk and Näslund: we show that in the large market there is
an explicit characterization of the solution, while this may be not possible in every n-
dimensional small market. Furthermore, it is shown that in the large market an
extension of the so called Merton’s mutual fund theorem is valid, though this result
does not hold in every small market.
2. The model

We consider the model of a financial market with countably many assets: we
assume, as in [1,3], that there is one fixed market which consists of a riskless asset S0,
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used as numéraire, with price constantly equal to 1, and countably many risky assets,
which are modeled by a sequence of semimartingales ðStÞt2½0;T � ¼ ððSi

tÞt2½0;T �Þ
1
i¼1,

based on a filtered probability space ðO;F; ðFtÞt2½0;T �;PÞ, which satisfies the usual
assumptions.
We begin our discussion with the following:

Definition 2.1. (i) An n-elementary strategy is an Rn-valued, predictable process,
integrable with respect to ðSiÞipn. An elementary strategy is a strategy which is
n-elementary for some n.
(ii) Let x 2 Rþ: an n-elementary strategy H is said to be x-admissible, if ðH 
 SÞt ¼R t

0

P
ipn Hi dSi

X� x a.s. An elementary strategy H is called admissible if it is
x-admissible for some x 2 Rþ.
We denote byHn the set of admissible n-elementary strategies and byH the set of

admissible elementary strategies.

As usual, the notation H 
 S denotes the stochastic integral process
R 

0 Ht dSt: we

point out that, although in Definition 2.1(ii) S denotes an infinite-dimensional
semimartingale, the process ðH 
 SÞ is a standard stochastic integral in Rn.
Essentially, elementary strategies are those involving only a finite number of

assets. These strategies should be allowed by any reasonable definition of
admissibility, therefore any no-arbitrage condition should exclude elementary
arbitrage strategies. Since in finite-dimensional markets the absence of arbitrage is
conceptually equivalent to the existence of (local) martingale measures (see [5]
for a precise statement), we define the following sets of (local) martingale
measures:

Mn ¼ fQ5P jðH 
 SÞ is a Q-local martingale for all H 2 Hng,

Mn
e ¼ fQ 2 Mn jQ�Pg,

M ¼
\
nX1

Mn; Me ¼
\
nX1

Mn
e .

Remark 2.1. The above definition of Mn is given in analogy to [14], and it does not
imply that each Si is a local martingale under any Q 2 Me. However, this property is
recovered when Si is locally bounded (see [5] for details).

By the Fundamental Theorem of Asset Pricing, the absence of elementary
arbitrage strategies implies thatMn

e is nonempty for all n. Throughout this paper, we
shall make the stronger assumption:

Assumption 2.1. The set Me is not empty.

The class H of elementary strategies fails to be closed in any reasonable sense,
therefore it is not suitable for optimization problems. Indeed, the classical results on
APT suggest that optimal policies should involve the use of infinitely many assets to
maximize the effects of diversification.
Closing the space of elementary strategies naturally leads to definition of

stochastic integrals with respect to a sequence of semimartingales. We recall
the main definitions from [4], where such a definition has been introduced. We
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denote by E ¼ RN the set of all real sequences and by E 0 its topological dual, which
is the set of linear combination of Dirac measures on N. We call simple integrand
an E0-valued process of the form H ¼

P
ipn hidi, where, as usual, di denotes the

Dirac delta at point i, and hi are bounded and predictable processes. For a
simple integrand, ðH 
 SÞ is defined as the finite-dimensional stochastic integral
ð
P

ipn hi

 SiÞ.

A generalized integrand will be obtained as the limit, in a sense to be made precise,
of simple integrands.
First, we recall the definition of unbounded functionals.

Definition 2.2. An unbounded functional on E is a linear functional k whose domain
DomðkÞ is a subspace of E.

Definition 2.3. (i) A process H with values in the set of unbounded functionals on E

is predictable if there exists a sequence ðHnÞ of simple processes, such that

H ¼ lim
n!1

Hn a:s.

this means that x 2 DomðHÞ if the sequence HnðxÞ converges andHðxÞ ¼ limn HnðxÞ.
(ii) A predictable processH with values in the set of unbounded functionals on E is

integrable with respect to S if there exists a sequence ðHnÞ of simple integrands such
that Hn converges to H and the sequence of semimartingales Hn 
 Sð Þ converges to a
semimartingale Y in the semimartingale topology (see [7]). In this case, we define
H 
 S ¼ Y .

Definition 2.3(ii) makes sense if the limit process Y is unique, namely if it is
independent of the approximating sequence: this was proved in [4, Proposition 5.1].
We refer to [4] for all the properties of this stochastic integral. In particular, it can be
shown that the integral H 
 S is linear with respect to H, but not with respect to S.
The most relevant result in [4] is Theorem 5.2, which is the extension of a result
originally proved by Mémin [16] in the finite-dimensional context: the limit of
a sequence of stochastic integrals is still a stochastic integral, possibly with a
generalized integrand. This result will be used in the next section. In light of these
results, we give the following definition:

Definition 2.4. A generalized strategy is a process H which is integrable with respect
to the semimartingale S.

Given a generalized strategy H, we call self-financing portfolio with initial
endowment x, the process whose value is defined by the formula:

Vt ¼ x þ

Z t

0

Hs dSs. (2.1)

Essentially, V is the limit of the sequence of self-financing portfolios Vn ¼ x þ Hn 
 S,
where ðHnÞ is an approximating sequence for H. This definition, which seems the
natural extension to the infinite-dimensional framework of the classical notion of
self-financing portfolios, deserves however some comments.
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In general, a generalized strategy is not necessarily integrable with respect to the
sequence of the non-discounted assets. Indeed, assume that the numéraire S0 has the
form S0

t ¼ ert with r constant. Denote by S the sequence of the non-discounted

assets, by eS that of the discounted assets eSi
¼ Si=S0 and by H a generalized strategy,

that is, by definition, a process with values in the set of unbounded functionals on E,
which is integrable with respect to eS.
By Ito’s formula we have deSi

t ¼ �rSi
te

�rt dt þ e�rt dSi
t; hence, if H is integrable

with respect to eS and ðHnÞ ¼ ðhn;i
Þipn is an approximating sequence of simple

integrands, a necessary condition for H to be also S-integrable is that the sequence
HnðSÞ ¼

P
ipn hn;iSi converges, that is S 2 DomðHÞ (or, equivalently, eS 2 DomðHÞ).

Moreover, if this condition does not hold, it is not possible to determine the
amount invested in the riskless bond.
Indeed, let us consider the self-financing portfolio generated by the strategy H

with initial value V0. Then, V ¼ V0 þH 
 eS is the limit in SðPÞ of the sequence
V n ¼ V 0 þ Hn 
 eS. For all n, we can define the amount invested in the money market
account as a0;n ¼ V 0 þ Hn 
 eS� HnðeSÞ. However, if eSeDomðHÞ, hence, if HnðeSÞ
does not converge, then the sequence a0;n does not converge as well, hence a0 is not
defined. In conclusion, the process (2.1) exists as the limit value of a sequence of self-
financing portfolios, but it may be not possible to specify which proportion of the
portfolio is based on the riskless bond (see also [3] for an analogous discussion).
However, we must not forget that, in the real world, every portfolio is in fact based
on a finite (though possibly very large) number of assets.
A drawback of generalized integrands is that the so-called Ansel-Stricker property

does not hold: more precisely, if each Si is a local martingale, H is a generalized
integrand and the process H 
 S is bounded from below, then H 
 S is not necessarily
a supermartingale. A counterexample can be found in [4] (Example 5.1), which is an
extension of an example due to Emery. Conversely, if Hn is an approximating sequence
for H such that the sequence Hn 
 S is uniformly bounded from below and converges to
H 
 S, then it is easy to verify that H 
 S is a supermartingale. Therefore, a good
definition of admissibility has to take into account also an approximating sequence:

Definition 2.5. Let x40. A strategy H is x-admissible if there exists an approxi-
mating sequence ðHnÞnX1 � Hn of x-admissible strategies, such that ðHn 
 SÞ ! ðH 
 SÞ

in the semimartingale topology. We denote the set of x-admissible generalized
strategies by Ax.

In practice, the set Ax contains those strategies which can be approximated by
elementary strategies, each of them admissible with the same capital x.
In the next section we show that the class Ax is a good definition of admissible

claims, in the sense that the following properties hold:
(i)
 Assumption 2.1 excludes arbitrage opportunities.

(ii)
 Claims dominated by a fixed capital admit a dual characterization.

(iii)
 The maximum expected utility on the entire market is the limit of maximum

expected utility on finite-dimensional submarkets.
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3. Dual characterization of superreplicable claims
In finite-dimensional markets, we have that, for any X 2 L0
þ and x40:

sup
Q2Mn

e

EQ X½ �px () Xpx þ ðH 
 SÞT for some H 2 Hn. (3.1)

This characterization of contingent claims superreplicable with initial capital x was
first proved in [6] in the Brownian filtration, and later extended to the general case by
a number of authors (see [5] and the references therein).
We denote by pnðX Þ the superreplication price of X using the first n securities:

pnðX Þ ¼ sup
Q2Mn

e

EQ X½ �.

As we consider the entire market, we have two possible analogues for the left-hand
side in (3.1):

p1ðX Þ ¼ lim
n!1

pnðX Þ ¼ inf
nX1

sup
Q2Mn

e

EQ X½ �,

pðX Þ ¼ sup
Q2Me

EQ X½ �.

It is clear from the definition that the following inequality holds:

pðX Þpp1ðX Þ.

We will show with some examples (see Example 3.1 and Section 5) that the strict
inequality may hold. The number p1ðX Þ can be easily characterized as follows:

p1ðX Þ ¼ inffx jXpx þ ðH 
 SÞT ; for some H 2 Hg.

In general p1ðX Þ is only an infimum.
The next theorem provides a characterization of pðX Þ analogous to (3.1) in terms

of generalized admissible strategies.

Theorem 3.1. Let X 2 L0
þ and x40. The following conditions are equivalent:
(i)
 supQ2Me
EQ½X �px;
(ii)
 There exists H 2 Ax, such that

Xpx þ ðH 
 SÞT .
In order to prove Theorem 3.1, we need to introduce some notation.
For a set A � L0, we denote by bA its closure in the space L0, endowed with
convergence in probability. Following Kramkov and Schachermayer [14], we
introduce the sets

Cn ¼ fX 2 L0
þ : Xp1þ ðH 
 SÞT ; H 2 Hng,
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and C ¼
S

nX1Cn. Recall that the polar of a set A � L0
þ is defined by:

A� ¼ ff 2 L0
þ : E fg½ �p1 for all g 2 Ag.

We need a few preliminary results:

Lemma 3.2. Let X 2 L0
þ. Then, under Assumption 2.1 we have that
sup
Q2Me

EQ½X � ¼ sup
f2C�

E½fX �.

Proof. Note first that, if we identify the elements of Me with their Radon Nykodim
derivatives, Me � C�. In fact, for any admissible H 2 H, we have that ðH 
 SÞ is a
supermartingale, and hence EQ½1þ ðH 
 SÞT �p1.
Vice versa, suppose that f 2 C�. Since 1 2 C and �L1

þ � C, it follows that
f 2 L1

þ and that E f½ �p1. Let ðf nÞ
1
n¼1 be a maximizing sequence for the right-hand

side. Up to a rescaling, which can only increase expectations, we can assume
that E½f n� ¼ 1 for all n. By assumption 2.1, we can consider Q 2 Me, and
denote by g ¼

dQ
dP

its density. We define a new sequence of measures ðQnÞ
1
n¼1,

defined by dQn

dP
¼ ð1� 1

n
Þf n þ

1
n

g. It is clear that Qn 2 Me for all n, and that
limn!1 EQn

½X � ¼ limn!1 E½f nX �. &

Lemma 3.3. Let ðf nÞ
1
n¼1 be a sequence of random variables, such that �1pf np

ðHn 
 SÞT , where Hn 2 H. Assume that f n converges almost surely to f. Then, there

exists a process H 2 A1 such that fpðH 
 SÞT .

Proof. The proof essentially follows from the results in Section 4 in [5] (see also [9]).
Assumption 2.1 immediately implies that ðHn 
 SÞtX� 1 for all tpT , which means
that Hn is 1-admissible. Let us denote by K1

0 ¼ fðH 
 SÞT : H 2 H;H 1-admissibleg.
By Lemma A1.1 in [5], there exists a sequence of convex combinations
ð ~H

n
Þ 2 convðHn;Hnþ1; . . .Þ, such that ð ~H

n

 SÞT converges almost surely. By the

convexity of K1
0,

~H
n
are still 1-admissible elementary strategies. It follows that fpg,

where g is some element in bK1

0, hence the set Df ¼ fg 2 bK1

0 : gXf a:s:g is not empty.
Since Assumption 2.1 implies that K1

0 is bounded in L0, it follows thatD is also bounded.
Lemma 4.3 in [5] implies that Df contains a maximal element, denoted by f 0, which can
be written in the form f 0 ¼ limnðL

n 
 SÞT , where Ln are 1-admissible elementary
strategies and the convergence is in probability. Then we can apply Lemmas 4.5, 4.10 and
4.11 in [5], and we obtain a sequence of strategies ð ~L

n
Þ 2 convðLn;Lnþ1; . . .Þ such that the

sequence of semimartingales ð ~L
n

 SÞ is Cauchy in the semimartingale topology.

At this point, if we were in the finite-dimensional setting (and dealed with standard
stochastic integrals in Rd , for d 2 N), we would apply a result due to Mémin
(Corollary III.4 in [16]) and claim that ð ~L

n

 SÞ converges to a stochastic integral

L 
 S. In the present case, we can apply Theorem 5.2 in [4] (which may be seen as an
infinite-dimensional analogous of the result of Mémin), to obtain a generalized
strategy H such that ~L

n
converges to H and ð ~L

n

 SÞ converges to H 
 S in the

semimartingale topology, hence H 2 A1. &

The previous lemma allows to characterize the closure of C.
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Lemma 3.4. The following result holds:

bC ¼ fX 2 L0
þ : Xp1þ ðH 
 SÞT ; H 2 A1g.

Proof. Let ðX nÞ
1
n¼1 be a sequence in C, converging in probability to a random

variable X. Up to a subsequence, we can assume that X n converges almost surely to
X. Then, Lemma 3.3 applied to the sequence ðX n � 1Þ shows that there exists a
generalized strategy H 2 A1 such that Xp1þ ðH 
 SÞT .
Conversely, assume that XpY ¼ 1þ ðH 
 SÞT for some H 2 A1. The random

variable Y belongs to bC, which is solid (we recall that a subset A � L0
þ is

called solid if g 2 A; h 2 L0 and 0phpg implies that h 2 A). It follows that
X 2 bC. &

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We can assume, without loss of generality, that x ¼ 1. By
Lemma 3.2, condition (i) amounts to say that X belongs to C��, which is the bipolar
of C. By the bipolar theorem (in the version of Brannath and Schachermayer [2]),
C�� is the closed convex solid hull of C in L0

þ. Since C is convex and solid, C�� is just
the closure of C in L0. Then, the equivalence between (i) and (ii) follows from the
characterization of bC given in Lemma 3.4. &

The next example shows that, with infinitely many assets, the superreplication
prices pðX Þ and p1ðX Þ may be different.

Example 3.1. Consider a one-period model (i.e. T ¼ f0; 1g) on the countable
probability space O ¼ fong

1
n¼0. F0 and F1 are, respectively, the trivial and the

discrete s-algebra on O. The probability and the assets prices at the final time 1 are
defined as follows:

Pðo0Þ ¼ 1� a; PðonÞ ¼ a2�n for nX1,

Sn
1ðo0Þ ¼ 1; Sn

1ðonÞ ¼ 2n; Sn
1ðokÞ ¼ 0 for all kef0; ng.

We set the initial price of all assets to some constant c40. Note that this market is
complete: to see this, it is sufficient to show that all Arrow–Debreu securities X j :
oi 7! dij are replicable. For kX2, we have trivially X k ¼ 2�kSk, hence it is sufficient
to replicate X 0 (X 1 will be obtained from the riskless asset by difference). Consider
the strategy of borrowing one unit of the riskless asset, and holding fyng

1
n¼1 units

of risky assets. If we set y1 ¼ 1 and yn ¼ 2�n, the payoff of this strategy will be
exactly X 0.
Let us now consider the cost of superreplicating the claim X 0. If we have only a

finite number of assets at our disposal, it is intuitively clear that this cost will be at
least c. This can be seen as follows: let Q be a martingale measure for all Sn, and
denote by qn ¼ QðonÞ. In the market with the first n securities, we have the system of
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n equations in n þ 1 unknowns:

q0 þ q1 ¼ c

q0 þ 2q2 ¼ c

..

.

q0 þ 2nqn ¼ c;

which has one-dimensional set of solutions:

q0 2 ð0; cÞ,

qk ¼ 2�kðc � q0Þ; 1pkpn

hence the supremum of q0 (the price of X 0 under Q) is clearly c.
Note that for finite n the condition

P1

k¼1 qk ¼ 1 remains vacuous, but this is no
longer true when n ¼ 1. In this case, the only martingale measure Q is given by:

q0 ¼ 2c � 1,

qk ¼ 2�kðc � q0Þ; kX1,

and 2c � 1oc whenever co1.
4. Utility maximization

In this section we want to study the problem of utility maximization, using the
convex duality approach.
With the following definition, we summarize the usual assumptions on utility

functions.

Definition 4.1. A function u : Rþ7!R satisfies the Regularity Conditions if it is strictly
increasing, strictly concave, continuously differentiable and satisfies the Inada
conditions u0ð0Þ ¼ 1 and u0ð1Þ ¼ 0.

Given a utility function U : Rþ7!R, we make the following assumption:

Assumption 4.1. The utility function U satisfies the Regularity Conditions.

As usual, V will denote the convex conjugate function of U, namely

V ðyÞ ¼ sup
x40

½UðxÞ � xy�

for y40. It is well-known (see, for instance, [20]) that, if U satisfies the regularity
conditions, then V satisfies the inversion formula

UðxÞ ¼ inf
y40

½V ðyÞ þ xy�.

In addition, V is continuously differentiable, strictly convex, strictly decreasing,
V 0ð0Þ ¼ �1, V 0ð1Þ ¼ 0; in other words ð�V Þ satisfies the Regularity Conditions.
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Finally, �V 0ðyÞ is the inverse function of U 0ðxÞ (for more details and further
references, one can see [19]).
For all nX1, we define the finite-dimensional value functions:

unðxÞ ¼ sup
H2Hn

E U x þ

Z T

0

Hs dSs

� �� �
¼ sup

X2xCn

E½UðX Þ�. (4.1)

We denote by Dn the polar of Cn: this set was characterized by Kramkov and
Schachermayer as the closed, convex, solid hull of the set Mn

e (see [14] for details).
The dual problem of (4.1) is then defined by

vnðyÞ ¼ inf
Y2Dn

E½V ðyY Þ�. (4.2)

If we assume that unðxÞo1 for all x, the function vnðyÞ is the convex conjugate of
unðxÞ [14, Theorem 2.1]. Let us define

u1ðxÞ ¼ lim
n

unðxÞ; v1ðyÞ ¼ lim
n

vnðyÞ;

clearly, u1ðxÞ ¼ supH2H E½Uðx þ
R T

0 Hs dSsÞ�, that is, u1ðxÞ is the value function of
the utility maximization problem over all the elementary strategies. To exclude trivial
cases, we assume that u1ðx0Þo1 for some x040 (equivalently, for all x40, by the
concavity of u1).
We now consider the problem of maximizing expected utility over the class of

generalized strategies A:

max
H2Ax

E½Uðx þ ðH 
 SÞT Þ� (4.3)

and its value function:

uðxÞ ¼ sup
H2Ax

E½Uðx þ ðH 
 SÞT Þ�.

Since C ¼
S

nX1Cn, it is easy to check that C� ¼
T

nX1Dn ¼ D: then, the dual value
function is defined as follows:

vðyÞ ¼ inf
f2D

E V yfð Þ½ �. (4.4)

The inequalities uðxÞXu1ðxÞ and vðyÞXv1ðyÞ are evident: in fact, we will prove
that equality holds in both cases. Let us start by proving the second one:

Lemma 4.1. vðyÞ ¼ v1ðyÞ, for all y40.

Proof. Let Y n 2 Dn be such that

lim
n!1

E½V ðyY nÞ� ¼ v1ðyÞ.

Since 1 2 Cn for all n, ðY nÞ
1
n¼1 is bounded in L1ðQÞ for any Q 2 Me, and a

fortiori, it is bounded in L0. By Lemma A1.1 in [5], there exists a sequence
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ðZnÞ 2 convðY n;Y nþ1; . . .Þ, which converges almost surely to a random variable
Z 2 L0. Also, since Zn 2 Dn, it follows that Z ¼ limn!1 Zn 2

T1

n¼1Dn ¼ D. By the
convexity of V, it is easily seen that:

lim
n!1

E½V ðyZnÞ� ¼ v1ðyÞ.

Finally, Lemma 3.4 in [14] implies that the sequence ðV�ðyZnÞÞ is uniformly
integrable (since ðZnÞ is bounded in L1ðPÞ), hence

vðyÞpE V ðyZÞ½ �p lim inf
n!1

E½V ðyZnÞ� ¼ v1ðyÞ: &

Lemma 4.2. There exists y0 such that vðyÞo1 for y4y0.

Proof. For all n, the following relation holds for y40 (see [14, Theorem 3.1]):

vnðyÞ ¼ sup
x40

ðunðxÞ � xyÞ

and hence

vðyÞp sup
x40

ðu1ðxÞ � xyÞ. (4.5)

Since u1 is concave, the thesis easily follows. &

Proposition 4.3. u1ðxÞ ¼ uðxÞ, for all x40.

Proof. Let X 2 xbC;Y 2 yD. Since UðX ÞpV ðY Þ þ XY , it follows that uðxÞpvðyÞ þ

xy for all y40, and therefore

uðxÞp inf
y40

ðvðyÞ þ xyÞ.

In particular, it follows that uðxÞo1 for all x40. We can then apply Theorem 3.1
in [14], to prove that u and v are in duality and v is the convex conjugate of u:
precisely,

uðxÞ ¼ inf
y40

ðvðyÞ þ xyÞ,

vðyÞ ¼ sup
x40

ðuðxÞ � xyÞ.

Denote by ~v the convex conjugate of u1. Since (4.5) holds, we have that ~vðyÞXvðyÞ

for all y. So, we obtain u1ðxÞXuðxÞ, which completes the proof. &

The next theorem resumes the main results on the utility maximization problems,
which follow from [15] and from the results proved above.

Theorem 4.4. Under Assumptions 2.1 and 4.1, we have that:
(i)
 The value functions u and v are conjugate; moreover, u and �v satisfy the

Regularity Conditions.
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(ii)
 The function v satisfies the representation:

vðyÞ ¼ inf
Q2Me

E V y
dQ

dP

� �� �
.

(iii)
 The following relation holds:

uðxÞ ¼ sup
H2H

E½Uðx þ ðH 
 SÞT Þ�.
Furthermore, if vðyÞo1 for all y40 (see [15]), then
(iv)
 The optimal solution X̂ ðxÞ ¼ ðĤðxÞ 
 SÞT to (4.3) exists for any x40, and X̂ ðxÞ is

unique. In addition, if y ¼ u0ðxÞ, we have that U 0ðX̂ T ðxÞÞ ¼ Ŷ T ðyÞ, where Ŷ ðyÞ is

the optimal solution to (4.4).
5. Factor models

In this section, we want to analyze a model introduced by Björk and Näslund [1],
as a continuous time extension of the classical Arbitrage Pricing Models studied in
[18,8]. We assume that every asset price depends on a systematic source of
randomness which affects all the assets and on an idiosyncratic source of
randomness which is typical for that asset. In particular, we assume that the price
processes evolve according to the following dynamics:

dSi
t ¼ Si

t�ðai dt þ bi dN̂t þ si dW i
tÞ,

where ðW iÞiX1 is a sequence of independent Wiener processes and N̂t ¼ Nt � lt is a
compensated Poisson process with intensity l (N is the Poisson process), independent
of W i for all i. The Poisson process models some shocks which may occur in the
market and affect all the assets. As in [1], the coefficients ai;bi;si are uniformly
bounded deterministic constants. In particular we assume that bi; siXe40 for all i

and there exists M such that supiðjaij; bi; siÞpM. Björk and Näslund studied the
question of No Arbitrage and completeness and showed that an asymptotic portfolio
can be defined, as a limit of well-diversified portfolios, in order to complete the
market. In [3], completeness was characterized under an equivalent probability
measure. Here, we want to analyze the problems of superreplication and utility
maximization.
We assume for simplicity that T ¼ 1 and take as filtration ðFtÞtp1 the filtration

generated by the price processes, hence by fðW iÞiX1;Ng. Every local martingale L has
necessarily the form

Lt ¼ L0 þ

Z t

0

ks dN̂s þ
X
iX1

Z t

0

hi
s dW i

s, (5.1)
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where k; ðhi
ÞiX1 are predictable processes andZ 1

0

jksjds þ
X
iX1

Z 1

0

ðhi
sÞ
2 dso1 a:s. (5.2)

This fact is a straightforward extension of the analogous (and well-known)
result in finite dimension and the proof goes along the same lines: we give a
sketch of the proof since it seems difficult to find a precise reference in the literature.
Since the integral is an isometry, the space of the stochastic integrals is a closed
subspace in L2; then, it is sufficient to prove that if a random variable Z in L2ðFT Þ is
orthogonal to all the stochastic integrals, then it is identically zero. This is obvious
(as a consequence of the finite-dimensional results) if Z is measurable with respect to
the s-algebra generated by W 1; . . . ;W n, N, for every nX1. Since the set of the
random variables which fulfill these conditions is a dense subset of L2ðFT Þ, the claim
follows.
Let Q be a probability measure equivalent to P. Then, its density has the form

dQ=dP ¼ EðL1Þ (we recall that E denotes the stochastic exponential), where L has
the form (5.1), with L0 ¼ 0; furthermore, ks4� 1 to ensure that EðL1Þ40 and L is
such that EðLtÞ is a uniformly integrable martingale.

By Girsanov’s theorem, it follows that the process ~W
i

t ¼ W i
t �
R t

0 hi
s ds is a Q-

Wiener process, while the process ~Nt ¼ N̂t �
R t

0 lks ds ¼ Nt �
R t

0 lð1þ ksÞds is

a Q-martingale (namely
R t

0 l ð1þ ksÞds is the Q-compensator of the point process N).

Since ðSiÞipn is locally bounded, we have that Q 2 Mn
e if and only if ðSiÞipn is a

Q-local martingale and this occurs if and only if

hi
t ¼ �

ai þ bilkt

si

(5.3)

for all ipn. A necessary condition for Assumption 2.1 to hold is that the above
equality is satisfied for all iX1. Then, by condition (5.2), it must beR 1
0

P
i ðai þ bilktÞ

2s�2i dto1, as was shown also by Björk and Näslund. They also
showed that the sequence ðai=biÞ converges to some real number h0. This implies that
kt � �h0=l, hi

t � �ðai þ bih0Þ=si and there exists a unique equivalent martingale
measure Q, provided that h0ol (the uniform integrability of the density EðL1Þ is a
consequence of Novikov condition).
Conversely, on the n-dimensional market, there are infinitely many equivalent

martingale measures. In particular, the point process N may have any intensity, and,
possibly, even a stochastic compensator.

5.1. Super-replication price

In Section 3, we observed that we can give two different definitions for the
superreplication price in the large market: we can show in this framework an
example where the superreplication prices p and p1 are different. Assume that
h0 ¼ 0 and let X ¼ 1IfN1¼0g be the binary claim which pays 1 if the market does not
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jump, 0 otherwise. In the large market, N1 is a Poisson random variable with
intensity l, hence pðX Þ ¼ EQ X½ � ¼ e�l. In the n-market, N1 may be a Poisson
random variable with any intensity (or, possibly, a random variable with more
general distribution): it is evident, then, that p1ðX Þ ¼ 14e�l.
5.2. Utility maximization

Let U be a utility function and V its convex conjugate, such that the hypotheses of
Section 4 are satisfied. Thanks to the uniqueness of the martingale measure, we have
that

vðyÞ ¼ E V y
dQ

dP

� �� �
¼ E½V ðyŶ Þ�,

where we recall that

Ŷ ¼ EðL1Þ ¼ E
X
jX1

hjW
j
1 �

h0

l
N̂1

 !

¼ exp
X
iX0

h2i

 !
E
X
jX1

hj
~W

j

1 �
h0

l
~N1

 !
.

Denote by ~W h the process
P

jX1 hj
~W

j
. This is a brownian motion with respect to the

probability Q as well as the process ~N is a Q-compensated Poisson process (with
compensator lð1� h0=lÞt ¼ ðl� h0Þt). Furthermore, both ~W h and ~N coincide with
the values of two self-financing portfolios. To show this, we need to find a pair of
generalized strategies H1 and H2 such that

~W h ¼ H1 
 S; ~N ¼ H2 
 S. (5.4)

Because the integral is invariant with respect to a change in probability, it is sufficient
to find two approximating sequences Hn

1, Hn
2 such that Hn

1 converges to H1, Hn
2

converges to H2 and Hn
1 
 S, Hn

2 
 S converge, respectively, to ~W h and ~N in SðQÞ. In
fact, since Si is a Q-martingale, the convergence will be in M2

locðQÞ. It was already
proved in [3] (Section 4) that such sequences do exist, so we will omit the details.
Observe that ~W h and ~N can be interpreted as mutual funds, composed of a small

part of each asset. In particular ~W h does not depend on the systematic risk and
contain a small part of all the idiosyncratic risks, while ~N is based only on the
systematic risk.
The optimal solution of the problem of utility maximization is given by

X̂ 1ðxÞ ¼ IðyŶ Þ ¼ I y exp
X
iX0

h2i

 !
E ð ~W hÞ1 �

h0

l
~N1

� � !
.

Let X̂ t be defined as X̂ t ¼ EQ X 1jFt½ �; the process ðX̂ tÞtp1 is a Q-martingale.
Furthermore, it is a Q-martingale also with respect to the filtration generated
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by ð ~W h; ~NÞ, hence it admits a representation as

X̂ 1ðxÞ ¼ x þ

Z 1

0

fsðxÞdð ~W hÞs þ

Z 1

0

csðxÞd ~Ns. (5.5)

This, combined with (5.4), allows us to find the optimal strategy ĤðxÞ ¼

fðxÞH1 þ cðxÞH2. Note that H1 and H2 depend only on the density of the equi-
valent martingale measure, while fðxÞ and cðxÞ are the sole processes affected by the
choice of the utility function. So, we can claim a sort of mutual fund theorem:

Theorem 5.1. For any utility function U, the optimal portfolio consists of an allocation

between the risk free asset, the mutual fund ~W h and the mutual fund ~N.

Note that in the case considered in Section (5.1), that is h0 ¼ 0, the optimal
portfolio is based only on the risk-free asset and on the mutual fund ~W h. This shows
that the utility maximization problem in the large market is quite easy to solve when
this is complete. Furthermore, we know that the optimal solution is the limit of the
optimal solutions in the finite-dimensional market.
Conversely, if one defines the problem in any finite-dimensional market, one can

immediately realize that both the utility maximization problem and its dual problem
are very difficult to solve.
The mutual fund theorem relies on the results of completeness of the market

and representation of the claims as stochastic integrals (hence, as self-financing
portfolios), results which are quite simple to obtain in the market analyzed above. It
may be reasonable and interesting to consider more complicated models, where for
instance there are more than one common source of randomness (multi-factor
models). In this case, further conditions on the coefficients are necessary in order to
guarantee the completeness of the market. The research of these types of conditions
is beyond the scope of the present paper. However we refer to [1,3], as a guide for
further investigations: the first paper follows a more heuristic approach, based on the
search for asymptotic assets which complete the market; the second one characterizes
completeness in terms of an isomorphism between two appropriate Hilbert spaces. In
particular, in the cited papers, it is studied in detail the case where the assets have
two systematic risk components (two-factor models), that are a Wiener process and a
Poisson process, whereas the idiosyncratic component of risk is given by a sequence
of independent Poisson processes (one for each asset): in this framework, necessary
and sufficient conditions on the coefficients are given for the market to be complete
(Theorem 4.7 in [3]). Following the approaches used in the two papers, one can find
(at least sufficient) conditions for the completeness of the market with standard
(though cumbersome) calculations.
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