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Abstract

In this paper we analyze some problems arising in the evaluation of American options when the underlying security pays
discrete dividends. To this aim, we study the problem of maximizing the expected gain process over stopping times taking
values in the union of disjoint, real compact sets. The results we obtain can be applied to evaluate options with restrictions on
exercise periods, but are also useful for the evaluation of American options on assets that pay discrete dividends. In particular,
we generalize the evaluation formula for American call options due to Whaley [Journal of Financial Economics 9 (1981)
207], allowing for a stochastic jump of the underlying security at the ex-dividend date and discuss the existence of the optimal
stopping time. In the same framework, we analyze American put options, justifying the procedure used in Meyer [Journal of
Computational Finance 5 (2) (2002)] to account for the presence of discrete dividends in the free boundary formulation from
the perspective of optimal stopping theory.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

American options on assets that pay discrete dividends are widely traded on financial markets. The evaluation
of such derivatives in continuous-time models (e.g. Black—Scholes) presents some mathematical problem, usually
neglected in practice or solved by means of purely financial intuition. The dividend paymé&nbatiadate produces
a decrease in the stock value thajgproximatelyequal to the dividend amou(df. Murray and Jagannathan, 1998;

Heath and Jarrow, 1988; Battauz and Beccacece, 20tironsequently the trajectories of the underlying payoff
process have a jump at a fixed instant. Therefore, options that without dividends are exercised optimally only
at the maturity date, may have positive early-exercise premium. For example, an American call option may be
optimally exercised at the end of the cum-dividend date if a dividend is paid during the life of the option. From a
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financial point of view, this fact seems natu(s¢e Roll, 1977; Whaley, 1981; Geske, 19M)t the mathematical
description of the phenomenon presents some technical difficulty. Indeed, if the dividend payment o€gurs at
meaning that’';, is thecum-dividenddate andl'p is theex-dividenddate, it may be optimal to exercise the call
option just immediately before the decrease of the stock. But formally such an optimal stopping time does not
existl Moreover, the ex-dividend stock jump can be affected bydditional source of risk, as documented in
the literature(compare Murray and Jagannathan, 1998; Battauz and Beccacece, 2004 and the references therein
The presence of an additional randomness source makes the market model free of arbitrage but in(saaplete
Heath and Jarrow, 1988; Ohashi, 1991; Battauz, 2003his framework, to evaluate a contingent claimet@ose
an equivalent risk-neutral martingale measure, among all the equivalent probabilities under which the actualized
implied gain process is a martingale. Then, if the contingent claim is of American type, its actualized fair value
is given by the Snell envelope of the discounted payoff process under the selected risk-neutral probability. The
existence of the smallest right continuous with left limits supermartingale dominating the discounted payoff process
is guaranteed, since the trajectories of the payoff process are right continuous with lefdoniizare El Karoui,
1979) On the contrary, the existence and the characterization of the optimal stopping time does not follow from
standard results in optimal stopping theory, as in the case of the call option. Indeed, the usual assumption of
left-continuity in expectation, required, for example,BhKaroui (1979) holds not true in this case. Hence, to
deduce in our framework the existence of the optimal stopping time and to characterize it as the arrival time in the
set where the Snell envelope coincides with the discounted payoff process, we use the following tstiettfie
the time-interval [0 T'] that represents the life period of the option introducirfgctitiousinterval [Ty, T2], where
T1 denotes the end of the cum-dividend date @nthe beginning of the ex-dividend date. Duririg [ 7>[ the stock
price process as well as the information structure remain constant and vary @nlyTais allows us to glue the
discreterregularity due to the dividend payment and the exogenous source of risk, acting at the dividend date, to the
continuos-time usuaindom evolution of the market. Looking for optimal exercise policies, we prove that investors
can exercise optimallgither beforghe end of the cum-dividend datg,, or afterthe beginning of the ex-dividend
date,T>. Hence the evaluation problem is reduced to compute the “Snell envelope” on stopping times taking values
in [0, T1] U [T>, T]. The results we obtain can also be applied to evaluate American options with restrictions on
exercise periods.

The paper is organized as follows. In the next section, after a brief description of the adopted market model
(introduced in Battauz, 2003)ve introduce the stretch of the filtration and market processes fiota 7>. We
prove inTheorem Xhat no optimal exercise policy takes valuesiix ]7>[ and hence the introduction of the fictitious
interval ]T1; T>[ does not produce any financial anomaly. On the contrary, this trick allows us to characterize the
optimal stopping time as the first instant such that the Snell envelope reaches the underlying payoff process, thougt
the trajectories of the latter are not continuous. As a consequ€ncellary 1provides the backwardiscretelink
from 7> to T1, formalizing the financial intuition that if no exercise ify} 7»[ is allowed, then the discounted value
of any option in7> is the maximum between its actualized payoff proceds ifwhenever the immediate exercise is
convenient) and the discountedntinuation valuevailable fromZ» on. We apply these results to evaluate options
with restrictions on exercise periodsRemark land focus infSection 3on American call options and Bection 4
on American put options.

2. Themarket model
We adopt the market model introducedBattauz (2003gnd used also iBattauz and Beccacece (2004at
generalizes the approachBjbirk (1998)for describing the behavior of assets that pay discrete dividends. We recall

here briefly the basics of the model and refeBtttauz (2003for a complete discussion on it. We consider an
assetS that pays a dividend at afixed and knowdater = Tp. More precisely, the instarit, is thecum-dividend

! The exercise is optimal dt; but not at7p anymore.
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date, while the instarft, is theex-dividendiate. Beyond ansualprobability spaces2°, P°, (f?)t), with standard
assumptions on the filtrati(xrf?), (see Protter, 1990)epresenting thasualuncertainty of the market far# Tp,

we consider theadditional probability spaceg$2*, P*, A*) that carries the exogenous additional randomness at
Tp (see Battauz and Beccacece, 2004 and the references thétenge the continuous-time evolution of the
market is described on the product spare- 2° x £2* by the completed right continuous version of the filtration
F=FeF, whereF} = {0, 2%} for0 <t < Tp andF; = A* for Tp <t < T, endowed with the product
measuré® = P® @ PX. We assume that the stoskhas a log-normal behavior everywhere bur'gtand between

T,, (the cum-dividend date) anfi, (the ex-dividend date) the stockhas a jump affected by a random variable
X : (2%, PX, A") — [a; B] € [-1; 1] as follows:

AS(Tp) = —D + X(S(Tj;) — D). )

The market, constituted by the sto§k) and the riskless bon#(r) = €' (wherer is the constant riskless interest
rate), is incomplete due to the additional randomness source. Hence there are many equivalent martingale measure:
for the implied discounted gain process, constituted by the actualized stock value and the discounted cumulative
dividend process. Theorem 2 and the subsequent Remahkttauz (2003)provide a characterization for the
densities of such equivalent martingale measures, that can be stated as follows:

Every martingale measuf@ « P for the discounted cumulative gain process is of the form:

Q=0Q%x Q% @)

whereQ?C is the usual risk-neutral measure capturel @°/dP® = £(— fOT(M —r/og) dWy), and dQ* = U dP¥
is only constrained by

/ Uw, x) dP*(x) = 1, / Uw, )X (x) dP*(x) =0 (3)

for P%-a.e.w € 22°. The measur@ is a probability measure i > 0.
The dynamics of the stock priceis described unde® = Q° x QX by

S(0) = So, S(Tp) = (S(Tp) — D)1+ X), ds(r) = S@(rde +odW,), t# Tp, 4)

whereo €]0; +o0[ is the volatility of the stock pricelV is a Q°-Brownian motion with respect t¢° and the
distribution of X is captured byQX.

In order to evaluate American derivatives in a complete market, one has to compute the Snell envelope of the
discounted payoff process under the risk-neutral measure. In incomplete markets, there are many prices that do
not permit arbitrage opportunities. Indeed, for a derivative writter$ eve find an interval of prices, varying the
risk-neutral probability according to Formu(I2). Therefore, we first determine the Snell envelope of the discounted
payoff process under a selected equivalent martingale measure (for example, the quadratic optimal seeasure;
Battauz, 2008 Then inSections 3 and we provide upper and lower bounds to the interval of NoArbitrage prices
of derivatives whose payoff process is a monotonic function of the underlying security, like call and put options
(seeBattauz and Beccacece (200f¢y numerical results based on the calibration of this model to the Italian
market).

In our framework, the trajectories of the stock price are continuous everywhere Byt dthe presence of
the dividend and the discrepandy produce in the stock a jump describedBqn. (1) and make the process in
t = Tp right continuous with left limits (RCLL henceforth). This is enough to guarantee the existence of the
Snell envelope for a discounted payoff procegsthat is continuous with respect to the price of the underly-
ing security(compare El Karoui, 1979Hence there exists the Snell envelope of the discounted payoff for both
the call and the put option, but problems arise in general with respect to the existence of an optimal stopping

2 £(-) denotes the stochastic exponential Riotter (1990)
3 A ~ denotes the values actualized with the riskless bond.
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time. However, since trading takes place until the end of the cum-dividend date, it is financially consistent to
allow for exercise policies in a set;[@1] U [T2; T] (with T3 < T»), whereTy plays the role of the end of the
cum-dividend datd';, and7> the beginning of the ex-dividend dal®. In fact, the same trick is implicitly and
informally applied to provide an analytical formula for evaluating American call options with known discrete
dividends inRoll (1977), Geske (1979ndWhaley (1981) Therefore, to formalize mathematically the possibil-

ity of early exercise at the end of the cum-dividend date, we redefine the discounted payoff prodgsdih [

as follows:

Wy ifr<T,
Y =3 W(T) fTi<t<Ty, (5)
(@) fT<t<T

In the same way we stretch the filtration df { 73|, setting

F ifr<Ty,
Fo={ Fn fTL<t<Ts, (6)
F fh<t<T

and the stock price process similarly, so that under a risk-neutral me@stuiedriven by

SO0 =Sy, dS, =S8,(¢di+odW,) f0<t<Ty, §=8, fTh<i<Ts,
Sz, =S, — D)1+ X), dS, = S,rdt +odW,) fTo<t<T (7)

We prove henceforth that this formal settlement is what we need to represent mathematically the possibility of
optimal early-exercise at the end of the cum-dividend date and that ficthi®us time-interval J; T2[ nothing

new happens. Indeed, the Snell envelopéforj with respect to the filtratiodF exist¢ and is in fact the smallest

RCLL supermartingale greater than(compare Theorem 2.15 in El Karoui (19799)ince both the process as

well as the filtrationF are constant oriff; T»[, we prove inTheorem 1Part 1, that the Snell envelogés constant

on the same interval. This allows us to prove in Part 2 that the optimal stoppingtiméhe arrival time in the set

{J = ¥}. This characterization constitutes also a technical contribution, since standard results do not apply due to
the lack of left-continuity in expectation of the proceisscompare Theorem 2.18 in El Karoui (197%aving this
characterization at our disposal, it is easy to provélirorem 1 Part 3, that every exercise policy taking values in

1Ty; To[ is sub-optimal. Hence the introduction of the fictitious intenfL ]7»[ gains financial consistency without
producing modelization anomalies.

Theorem 1. Let be a process continuous for# T, constant or{71; 72[ and uniformly integrable. Denote
with T the set of theF-stopping times and with J the Snell envelopg afith respect to the filtratioF under the
probability measure&). We have that

1. The process J is constant §fy; 5.

2. The optimal stopping time* e T, i.e. E[/(t*)] = sup,<r E[¥(U)], is the arrival time in the set/ = 7/}, i.e.
* =inf{t > 01y (t) = JO} A T.

3. The optimal stopping time* € [0; T1] U [T2; T] a.e.

Proof. To prove Part 1, we first notice that the Snell envelopé d$ nonincreasing onth; T2[. Indeed, since/
is a supermartingale ang, = F;, for all 11 < 2 € [Tq; To[, we have thatl;, > E[J,,|F,] = E[Jy,|F] = Ji,-

4 Note that the proces}s(z) is RCLL in 7> and continuous elsewhere.
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Moreover,J is constant onTy; 72[. To see this, define

J;  ifre[0; Ty,
Ji=1 g fre[TuT
Jo ifte[Ty T

that turn out to be the Snell envelopel,ﬁﬂn fact,J > w smcexp is constanton]]_“l, T>[and itis RCLL. Moreover,
J is a supermartingale. Since by constructibg: J, it turns out that/ = J.

To prove Part 2, we have to generalize the proof of Theorem 2.E8Kmroui (1979) since the procesg is not
left-continuous in expectation everywhere. To this aim}Jet [0; 1[, A, 1 1 and denote by,, = {(«w, l‘)|12f;(a)) >
AnJi(@)} and byr4» the arrival time in the set,,, i.e. 74 = inf{r > 0|y, > A, J;}. In the same way, denote by
the arrival time in the seA = {(w, H)|¥:(®) = J;(®)}.

Sincex, is increasing, the sequence of stopping timésis also increasing and being boundedbit admits
a limit, that we denote by. Since bothj andJ are constant inTy; T2[, by Part 1,t4n ¢]Ty; To[. Indeed, if there
existB C £ such thatr4» (w) € [Tl, 1|, for w € B, the constancy of andy on [T1; To[ implies that on the sd8
we havey (1) = (1) > A, J(t4) = A, J(1) for all 1 € [T1; To[ and hencen < Ty. Therefore, eithet4n < Ty
or T» < t» < T. Moreover, since the sequencé: is increasing, we have that f@-a.e.w € £, the sequence
A (w) lies definitely either in [Q T1] or in [T»; T]. Being 1?/ continuous for € [0; T1] and fort € [T»; T], we
can conclude thalr,4, — v almost everywhere as — +oco. Moreover since the familyy,4, ), is uniformly
integrable, it follows thaE[y/,4,] — E[;] asn — +oc. Therefore, sincél/A,)E[V/,4,] > supcr E[Vy] for
all »,,, passing to the limit we have thEtfp;] > SUfRyeT ]E[&U], i.e. 7 is optimal. Since for alk,, we haved,, D A,
it follows thatt4» < 4 and thereforg = lim,_» " < tA. Moreover, since is optimal, by Theorem 2.12 in
El Karoui (1979)we have that/(z) = vz, hencer > 4. Sincer? coincides with the optimal stopping tintethe
arrival timet4 is optimal.

Part 3 follows immediately since” is the first instant such that/(r) = fp(z). O

Looking at the optimal stopping describedTiheorem 1 Part 3, we observe that the first instant affemwhen
early exercise may be optimal . Hence it is possible to go backward frdfp and 71 as indiscretetime. The
following corollary supplies the recursive link froffy to 71, proving in a rigorous way what is also financially
intuitive: if exercise in ¥1; T>[ is forbidden, the actualized value of the optionTZinis the maximum between the
actualized payoff process i (ifimmediate exercise is convenient) and the discountedinuation valuavailable
from 7> on.

Corollary 1. Under the assumptions dheorem 1let

U if €[0; 71,

¢ = . , _
"7 maxtin. BT TRy ifr = T

Then the Snell envelope J of the procelsss

essSuR.,p, Elp(nIF] ifr € [0; Tal,
Jr =1 o(T1) ifr € [Ta; T2f, (8)
esssup.,.; E[Y(0)|F]  ift € [To: T].

Proof. Denote byK; the process defined on the right hand sid¢8h K is a RCLL supermartingale and by
constructionk > . Hence,K > J. To prove the opposite inequality, note th&t coincides already withy; for

5 There existsig € N such that either® (») € [0; T1] for all n > ng or 4 (w) € [T2; T] for all n > ny.
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t € [T2; T]. Moreover, since/ is a supermartingale, we have, > E[J(T»)|Fr,] and by constructioyr, > fﬁrl.
This implies that/(T1) > ¢(T1) and forr < T; we already havd(r) > fp(t) = ¢(1). SinceK is the Snell envelope
of the procesg on [0; Ty], we obtainJ > K and the thesis is proved. O

Remark 1 (American options with restrictions on exercise dat&3jrollary 1supplies the solution to the problem
of evaluating American options with restrictions on exercise dates. Indeed, denotgthéticontinuous actualized
payoff process of such an option and suppose that the early exercise is allowed or\@orT1] U[T»; T]. Fort €
[T2; T], the option coincides with an usual American one and its value is givéf(by= ess Sup.,_ E[¢ (D) F].
The troubles for the holder arise &: he has to decide whether to exercise immediately, gaipitfg), or to
wait for thecontinuation valueg[V (T»)|Fr,], available fromT> on. HenceV (T1) = max{¢(T1); E[V(T2)|Fr,]}
and forz € [0; 73] the option can be reduced to an usual American option, noticing thaethenal condition
at 71 on V is the previously written one. Hence, replacingGorollary 1the payoff process with ¢, we see
that the right hand side in Formu(&) defines exactly the discounted value of the option with restrictions on
exercise dated/. This means tha¥ is the Snell envelope of amsualAmerican option whose payoff coincides
with ¢ everywhere but on the seTy); T5[. On ]T1; T»[ the payoff¢ is undefined and we se?t(t) = ¢(Ty) for

t € [Ty; To[, as in Formula5). Hence an option whose exercise is not allowed Bin T>[ can be evaluated as
an usual American ondilling the forbidden interval 7; 7[ with the definition of thestretchedy, as already
explained.

Remark 2. We notice thafTheorem landCorollary 1do not depend on the hypotheses on the dynamics of
requiring only the continuity of the actualized payoff procgder : # 71 and the constancy off{; 75[ of both the
payoff ¢ and the filtrationF.

3. American call options

This section is devoted to the study of the American call option, whose discounted payoff process is represented
in our framework by

e " Ss@ - Kt if t < Ty,
U =4 e (ST - K)Y ifTi<t<To, (9)
e "(S@ - Kt ifTh<t<T

Since the process is continuous for # T and RCLL fors = T», Theorem Iguarantees the existence of the
optimal stopping time* € [0; T1] U [T>; T]. More precisely, we prove iRProposition 1that the American call
option can be optimally exercised either7ator at 7 and describe explicitly the continuation region. Rewriting
the optimal exercise policy dProposition lin terms of the cum-dividend price of the underlying security, we
extend to our framework the analytic evaluation formula for American call options provid&tiatey (1981)see
Proposition 2, accounting for the additional randomness soufc& he formula ofProposition 2s already used

in Battauz and Beccacece (20ad)compute prices for American call options on Italian common stocks that pay
discrete dividends and that are affected by an exogenous source of risk.

Proposition 1. With respect to the previous assumptiotiee optimal stopping time* € T, i.e. E[{/(t")] =
supycr E[¥ ()], is given by
T if 17/T1 = E[{”Tﬁ'—n],

™= B (10)
T, othemwise
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Proof. We verify thatr* is suchAthaE[fp(r*)] > E[y(1)] for a generic stopping time. To this aim, we decompose
E[y (D] = E[Y () Ziz<1}] + E[¥ (D) Ziz>153]. Since fort € [0; To[ andt € [T»; T] the process is a submartingale,
we have that) (1) Zjr<1,) < Zr<r) BV (1) Fe] = Lizary BIY(TD)| F] and (D=1 < Liez 1) BIY (D) ).
HenceE[{/(1)] < E[Y/(T)Zr<1,)] + E[¥(DZjr=1,)]. Since{r > T2} = {r < T2)¢ and{r < T2} € Fr,, both the
functionsZi; .1,y andZ{>r) areﬁ-'rl—measurable: hence, recalling the construction®af (10) we have that

E[Y(T)Z(r<1)] = ElZr< 1) BIV (T Fry]] < ElZir< ) BI¥ ()| Fr]l,
E[U(DZ(r=13)] = ElZpes 1) Bl (DIFr]] < ElZ{rs 1) E[Y ()| Fr]].-

ThereforeE[y ()] < E[l]/(r*)I{KTZ}] + ]E[fp(r*)I{Tsz}] and the thesis is proved. O

Proposition 2. There exists a cum-dividend “critical priceS* such that the American call option is optimally
exercised affy if and only if S(T7) > S§*. Such critical priceS* is the unique solution of the equation

S*—-Kt = f bsa(S* — D)(1+ X), T — T», K) dQ*, (11)
QX

wherebsdss, t, K) denotes the value of an European call option on a stock with initial valtime to maturityr
and strike K computed with the usual Black—Scholes formula

bsass, 7, K) = sN(d1) — K € ""N(d>),

whered; = (log(s/K) + (r + (62/2))7)/(lo/T) andds = d1 — o4/7.
Hence the actualized value of the American call option is give ferr < T; by

= (/ (s — K)"dQ% + / bsa(S — D)(1+ X), T — T2, K) dQ* dQO) : (12)
€M \Jsss s<s* Jor

whereS = S(T1)|¢,, and forT, <t < T itis simply
J; = bsaS(), T —t, K).

Proof. Applying Proposition 1itis easy to find the critica$”, adapting the arguments Whaley (1981)Indeed,
E[yrr|Fr,] = E[E[e"T(S(T) — K)*|Fr,]|Fr,] and since

SNz, = $(T2) expl(r = 30T — T2) + oW(T = T)),

the inner conditional expectation is the value of an European call option with mafyrstyike K on an underly-
ing log-normal security that pays no dividends and that is wS(if) at the initial timeT>. HenceE[y 7| Fr,] =
Elbsa8(T2), T — T2, K)|Fr,] with S(T»)| By = (8(T) — D)A + X) and thereforeE[vyr|Fr] =
[ bSAS(T) — D)L + X), T — T, K)dQ* since Fr, = F ® {9, 2*). Defining f(s) = (s — K)* —
[ bSA(s— D) (1+X), T—T», K) dQ¥, we have fronEq. (10)that{* = T} = ({1, < E[Y7|Fn]} = (AS) < 0}.
Fors > K the derivativef’(s) = 1—fm N(d1((s—D)(1+X), T—T>, K))(1+X) dQ*, whereN(-) denotes the cumu-
lative distribution function of a standard Gaussian random variablégmgr, K) = (In(s/K)+ (r+02/2)7) /o/7.
Since 1+ X > 0 and O< N(-) < 1, we have thaf'(s) > 1 — fm(1+ X) dQ* = 0 since theQ*-expectation ofx
is zero. Therefore, beingi(s) < 0 fors < K and f'(s) > 0 fors > K, there exists an eventually infinifeynique
§* > K such that the s€tr* = T} = {S < $*}. HenceJ, = E[(t*)|F] = E[¥(T)Z(s- s+ + V(D Lis<s5+|F1]
and formulag11) and (12¥ollow. O

6 In case of infinite critical prices*, the early exercise is suboptimal.
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We conclude this section characterizing the interval of NoArbitrage prices for an American call option. To
emphasize the dependence on the choice of the risk-neutral probability mQasitiee computed Snell envelope
J, we use in the next proposition the notatidr= C<.

Proposition 3. Denote withC” (resp.@ﬁ) the Snell envelope of the actualized payoff of a call option written on
the securityS that satisfie€g. (7)under the probability measufeQ® = Q° x 8, (resp.Q? = QO x §5). Hence

for everyQ defined in(2) we have thaC?, the Snell envelope of the actualized payoff of the call option u@er
satisfies

Proof. Under Q*=Q° x &,, Eq. (7) has a unique solutior§®, that in particular verifiesS®(T2) =
(8*(T1) — D)(1 + @) a.e. Similarly, unde? = Q° x 85, Eq. (7)has a unique solutiof?, such thats? (1) =
(8#(T1) — D)1+ B). Sincea < X < B, for every solutionS of Eq. (7)underQ as in Formula2) we have that
SU(Ty) < S(Tz) < Sﬁ(Tz) Since forr € [T>; T] all the processes are driven by the same diffusigoation (7)

it follows that S“(t) < S(t) < S/f‘(t) for all + € [T2; T]. Moreover, since the processes coincide on7j), we
conclude thas® < § < $# on the whole interval [0T]. Denote bylp"‘ (resp. WJ’) the actualized payoff process of
a call option written orb® (resp.S#). The conditional expectation gf* (resp.y*) underQ® (resp.Q¥) and under

everyQ does not involve theF* component, sincg® (resp.y/?) is independent oX. HenceC” (resp.C ), that
is simply the Snell envelope q}“ (resp.fpﬁ) underQ® with respect to thetretched?°, coincides with the Snell
envelope of* (resp.y#) under everyQ with respect to the stretcheéll From$* < § < $f on [0; 7] it follows
that the actualized payoff processes of the derived call options satisfy the inequefitiests < v on [0; T] as

well as their Snell envelopsinderQ, such that” < ¢Q < & on [0; 7]. O

4. American put options

The actualized value (for a given risk-neutral measpy®f an American put option is given in our framework
by the Snell envelopé of

e (K — S@)*t if t < Ty,
Ui =4 e UK - S(T)t ifTh<t<To, (13)
e (K —S@)* ifTh<t<T

As for the call option, since the proce&s’s RCLL, there exists the RCLL supermartingdle¢hat aggregates the
Snell envelopécompare El Karoui, 1979 he characterization of the optimal stopping time as the arrival time in
the set{J = ¥} is guaranteed byheorem 1but can also be achieved in another way. In fact, since the underlying
stock can jump only downwards and the payoff of the put option is nonincreasing with respect to the stock, it follows
thaty jumps only upwards. Hence the payoff process of the put option satisfies cor{dition Proposition 4and
the characterization of the optimal stopping times follows. Conditial) in Proposition 4elaxes the assumption
of left-continuity in expectation required on the payoff process in Theorem 2.E8K+droui (1979)to prove that
the arrival time in the set/ = v/} is optimal.
As we know fromTheorem 1 the optimal exercise policy* takes values in [0T1] U [T; T]. However, the
holder of an American put option does not exercise it at the end of the cum-dividend date, being sure that the day

7 5, is the Dirac measure concentrated on the ey&nt o).
8 |f fﬁl < fpg then their Snell envelopes also satisfy the relatlpre J;.
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after the option is going to be worth more. In our framework this meansthat[0; T1[U[T>; T], as we prove in
Proposition 5

Proposition 4. Suppose that the procegsis RCLL and such that
lim_E[$0,] < E[] (14)

~

for every sequence of stopping tiniés1 U. Then the arrival time in the se{J = v} is optimal

Proof. The proof of Theorem 2.18 ikl Karoui (1979)can be adapted to our case, since the crucial convergence
of the limit lim,,_, o E[{/,4,] = E[y] for t4» 4 7, can be replaced by lim, o, E[¥,4,] < E[v:], that holds true
because of14)with U, = t4~. Indeed, passing to the limit we have tht);] > SURycT E[¢y], i.e. 7 is optimal.

And the rest of the proof follows unchanged. O

Proposition 5. The optimal exercise policy for an American put optidne [0; T1[U[T2; T].

Proof. Suppose that* = T; on a setB C £2 with Q(B) > 0. We prove that in this case" is not optimal. To
this aim, definer = t*Zpc + T»Zp and notice that is an admissible stopping time. Indeed fok Ti, the set
(T<t)={t*<t}is F,-measurable and far> Ty, the sef{t <t} = ({r* <t}NB)UBIs F,-measurable as
well. MoreoverE[/(7)] = E[V(t*)Zs] + E[¥(T2)Z5] > E[¥/(z%)], that contradicts the optimality af. 0

As for the American call option iProposition 3we supply here the bounds to the interval of the NoArbitrage
prices of an American put option.

Proposition 6. Denote withP? (resp. PP) the Snell envelope of the actualized payoff of a put option written on
the securityS that satisfie€q. (7)under the probability measu®* = Q° x &, (resp.Q? = Q° x 8p). Hence

for everyQ defined in(2) we have thaiP®, the Snell envelope of the actualized payoff of the put option uRder
satisfies

PP < PQ < po.

Proof. The proof is the same ¢froposition 3We only notice that frond® < § < SﬂAon [0, 7] it follows that the
actualized payoff processes of the derived put options satisfy the reverse inequgfitiesy < * on [0; T]. O

We conclude the section with some comments on the results we obtRitogesition Sescribes some feature of
the optimal stopping policy for an American put option, but is not exhausti®r@zositions 1 and fbr American
call options. Indeed, the evaluation of American put options presents many problems, even if no dividends are paid
during the life of the option, since no closed formula is available neither for the critical stock price (that describes
the exercise boundary) nor for the value of the option. In continuous-time models the price is computed solving
numerically either the variational inequality system or the free-boundary formulation of the optimal stopping problem
(see Myneni, 1992)The variational inequality approach does not determine explicitly the stopping boundary and is
particularly useful for the evaluation on multi-assets opti@es Jaillet (1990) for a finite-difference and Marcozzi
(2001) for a finite-elements treatment of the variational inequality systEine)free-boundary formulation consists
of the Black—Scholes partial differential equation and its usual boundary conditions plus a Neumann condition to
determine the unknown exercise boundary. The method of lines is apphédglier (2002)o solve numerically the
free-boundary formulation, accounting also for the presence of discrete dividends. In particular, the (actualized) put
option valueP(S(r), f) must satisfy a suitabliaterface conditiordue to the dividend payment. In our framework,
under the assumptioki = 0, the interface condition dfleyer (2002)can be written as

P(8(T1), T1) = P((S(T1) — D), T). (15)
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Condition (15) can be explained in the light @orollary 1andProposition 5 Indeed,Proposition 5guarantees
that early exercise cannot occurZat applyingCorollary 1this means that the Snell envelope (i.e. the actualized
put option value) aty is J(T1) = ma><{1pTl, ]E[J(T2)|]-‘Tl]} = ]E[J(T2)|J-‘Tl] that is exactly the previously written
condition(15)if X = 0 and becomes

PG, Ty) = /Q P(S(T) — D)L+ X), T2) dQ¥.

if X#£0.

Among all the analytical approximations available for the American put options, we recallCaerest al.
(1992), Bunch and Johnson (20@G0)dBarone-Adesi and Whaley (1988yhich also accounts for the presence of
dividends. InCarr et al. (1992), Bunch and Johnson (200 price of the American put option is decomposed
in various ways to get intuition on the structure of the option value and to deduce analytical approximation of the
critical stock price. In particulaBBunch and Johnson (200@ecompose the option value into the European put
price plus the early-exercise premium, asMgneni (1992) They argue financially that on the exercise boundary
the value of the option cannot depend on the time to maturity, i.e.:

oP
8_(5*(ftm), ttm) =0
tm

wherery, denotes the time to maturity of the option. Mathematically, this can be justified noticing that the exercise
boundaryS* is defined by the equation:

(K — S*(tm)) T — P(S*(ttm), ttm) = O.

Differentiating with respect tan, the left hand side of the equation fok > $* and applying the smooth pasting
condition of the free-boundary formulatifhwe obtain what the authors argueBnnch and Johnson (200Q)sing

the put decomposition with the early exercise premiBemch and Johnson (200@)ite an implicit equation for

the critical stock price and provide f&* an analytical approximation. AlsGarr et al. (1992kupply, among

other contributions, tighter analytic bounds and analytic approximation to the American put value, starting from the
early-exercise decomposition. However, as the authors explicitly writam et al. (1992)the extension of their

work to account for discrete dividends constitutes a significant avenue for future research.

5. Conclusions

To evaluate American options on assets that pay discrete dividends, we have analyzed an optimal stopping
problem with constraints on the stopping times. More precisely, we force the stopping times to take values in the
union of disjoint, real compact sets. We characterize the optimal exercise policy as the first instant such that the
value of the option equals the underlying payoff, even if the assumption of left-continuity in expectatidadails
El Karoui, 1979) We provide also the (backward) link between different exercise periods and apply these results
to evaluate options with restrictions on exercise dates. The same results are also useful to study American option:
on assets that pay discrete dividends. Indeed, for American call options, it is possible to formalize the existence of
the optimal exercise policy, that equals either the (end of the) cum-dividend date or the maturity date. Moreover,
we are able to generalize the evaluation formula for American call options dtdhabey (1981) allowing also
for a stochastic jump of the underlying security at the ex-dividend date. The generalized formula has been used in
Battauz and Beccacece (20G4d)analyze the impact of the extra randomness source on the derivatives traded on
the Italian market. Finally, we focus on American put options, discussing some recent lité¢satein@arr, 1992;

9 If K < $*(nm), the early exercise is suboptimalrat T — #m.
10 with our notations the smooth pasting conditiorid®/dS) (S* (ttm), #m) = —1 for all fm, < [0; T1].
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Bunch and Johnson, 2000; Meyer, 20@2d applying the backward link between exercise periods to extend the
time-discretization of the free boundary formulation to the case of an extra randomness source at the dividend date

(compare to Meyer, 2002)
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