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Let S be a local martingale with values in IRd, and let H be a d-dimensional
predictable process, such that the stochastic integral H · S does exist: if the
process (H · S)t is uniformly bounded from below by a constant (or, more in
general, by an integrable random variable), then H · S is a local martingale,
hence a supermartingale.

This result, which is inspired from a proposition by Emery in [8] for the
case d = 1, is due to Ansel and Stricker ([1], Corollary 3.5). Though obtained
as a corollary to a more general proposition, it has become a fundamental
result in mathematical finance. For instance, it was stated (as Theorem 2.9)
and widely used by Delbaen and Schachermayer in their seminal paper on the
fundamental theorem of asset pricing [5].

The purpose of this short note is to provide a different proof of the Ansel
and Stricker’s lemma, which also allows us to give a formulation of this result
for the stochastic integral of measure-valued processes with respect to a family
of semimartingales, indexed by a continuous parameter.

Let (Ω,F , (Ft)0�t�T ,P) be a filtered probability space, which satisfies the
usual conditions.

Theorem 1 Let X be an adapted càdlàg process and (Mn) a sequence of
martingales such that

(i) sup
t�T

|Mn
t −Xt| tends to 0 in probability as n → ∞;

(ii) there exist an increasing sequence (ηk) of stopping times which converges
stationarily to T and a sequence θk of integrable random variables, such
that Xt∧ηk

� θk.
(iii) for every stopping time τ , we have that (∆Mn

τ )− � (∆Xτ )− and
(∆Mn

τ )+ � (∆Xτ )+ (where ∆Xt = Xt −Xt−).

Then, X is a local martingale.
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Proof. We can assume, for simplicity, that Mn
0 = X0 = 0. Define a sequence

(τn) of stopping times as follows:

τn = inf {t > 0 : Xt > n or Mn
t > Xt + 1 or Mn

t < Xt − 1} ∧ T .

Because of (i), we have that limn τn = T , P-a.s. Possibly up to a subsequence
we can assume that

∑
n P(τn < T ) < ∞. We then define the stopping times

σn = (infm�n τm) ∧ ηn: the sequence σn is increasing and converges to T .
We will show that for all m, the stopped process Xσm

t = Xt∧σm
is a martin-

gale. For every t, the sequence Mn
t∧σm

goes to Xt∧σm
in probability. Thanks to

(ii) and the definition of σm, the jump ∆Xσm
is such that (∆Xσm

)− � m−θm;
condition (iii) implies that (∆Mn

σm
)− � m− θm as well. Since Mn

t � Xt − 1
for n � m and t < σm, we have that

Mn
t∧σm

� θm − 1 − (m− θm) = 2θm −m− 1 .

We can then apply Fatou’s lemma to find that

IE [Xt∧σm
] � lim inf

n→∞
IE
[
Mn

t∧σm

]
= 0 .

This shows that Xt∧σm
is integrable: in particular, taking t = T , we obtain

that Xσm
is integrable and, as a consequence, ∆Xσm

is integrable.
In an analogous way, we find that, for n � m,

Mn
t∧σm

� m + 1 + (∆Mn
σm

)+ � m + 1 + (∆Xσm
)+ .

So, we can apply Lebesgue theorem and obtain that for every fixed m and t,
the sequence of random variables Mn

t∧σm
converges to Xt∧σm

in L1(P): this
implies that Xσm

t is a martingale. ��

As a corollary, we deduce the lemma of Ansel and Stricker:

Corollary 2 Let S be a d-dimensional local martingale and let H be a
S-integrable predictable process. If there exists some constant C > 0 such
that (H · S) � −C for all t, then H · S is a local martingale.

Proof. We set X = H · S, Hn = H1{‖H‖�n} and Mn = Hn · S. Every Mn is
a local martingale, hence we can find an increasing sequence (τm) of stopping
times such that limm τm = ∞ and Mn

τm
is a martingale ([6], Theorem 3). So,

up to a standard localization, we can assume that every Mn is a martingale.
The claim follows from Proposition 1 as soon as we check that conditions

(i) and (iii) are fulfilled (condition (ii) is contained in the assumptions of the
corollary). It is well-known that if H is integrable with respect to S, then
supt�T |Mn

t −Xt|, tends to 0 in probability, whence condition (i). Condition
(iii) follows trivially once we have observed that ∆Mn

τ = ∆(H ·S)τ1{‖H‖τ �n}.
Hence the claim is proved. ��
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Now we briefly show how the previous arguments can be applied to the
case of measure-valued integrands.

Let M = (Mx)x∈I be a family of locally square integrable martingales,
where I is a compact subset of IR. We denote by P the predictable σ-field and
suppose that M satisfies the following:

Assumption 1. There exist an increasing predictable process At and a func-
tion Q defined on Ω×[0, T ]×I×I, measurable with respect to P⊗B(I)⊗B(I),
such that, for almost all (ω, s) ∈ Ω × [0, T ]:

(i) the function (x, y) �→ Qω,s(x, y) is symmetric, non-negative definite and
continuous;

(ii) the function (x, y) �→
∫ t

0
Qω,s(x, y)dAs(ω), is symmetric, non-negative

definite and continuous;
(iii) for fixed x, y ∈ I and for all t ∈ [0, T ] , we have that:

〈Mx,My〉t(ω) =
∫ t

0

Qω,s(x, y)dAs(ω) for P-a.e. ω.

With this assumption, a stochastic integral with respect to M can be
defined on an appropriate class of measure-valued processes, by making use of
a theory on cylindrical integration developed by Mikulevicius and Rozovskii [9]
(see also [3], Section 3). More in details, consider a stochastic process φ with
values in the set of the Radon measures on I (the dual set of the space of
continuous functions C = C(I, IR)), such that, for every f ∈ C, the process
〈φs, f〉M,C is predictable. We indicate by 〈φs, Qsψs〉 = 〈φs, Qsψs〉M,C the
bilinear form

∫
I
φs(dx)

∫
I
Qs(x, y)ψs(dy).

Suppose that

IE

[∫ T

0

〈φs, Qsφs〉dAs

]

< ∞ :

then it is possible to define the stochastic integral φ · M which is a square-
integrable martingale (see [9] for details). Moreover, if

∫ t

0
〈φs, Qsφs〉dAs is

locally integrable, the stochastic integral φ · M is defined and is a locally
square-integrable martingale.

More general stochastic integrals can be defined, in a similar way to what
happens for the finite dimensional case (see [2] page 130).

Let, for every n, φn = φ1{〈φ,Qφ〉�n}: we say that φ is M-integrable if
the sequence of square-integrable martingales φn · M is convergent for the
semimartingale topology (see [7] for the definition of this topology) and by
definition φ · M = limn→∞ φn · M. Note that, if X = φ · M, then φn · M =
1{〈φ,Qφ〉�n} ·X.

Exactly as for the finite-dimensional case, the process φ ·M might not be
a local-martingale (see for instance, [8]), but the analogue of Corollary 2 holds
(whit a proof similar to that of Corollary 2).
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Proposition 3 Let φ be a measure-valued integrable process. If there exists
some constant C such that (φ · M)t � −C for all t, then φ · M is a local
martingale.

Remark: We point out that a stochastic integral H.M has been defined in [4]
for a wider class of integrands H, and that in this more general framework
the analogue of the Ansel–Stricker’s lemma is false (see [4], Example 2.1).
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