

Modulo di "Geometria" — Scritto del 19/7/22 — Quesiti

Nome _____ Cognome _____ Matricola _ _ _ _

- **1.** Stabilire per quali $k \in \mathbb{R}$ è diagonalizzabile la matrice $\begin{pmatrix} k^2 k 9 & k + 4 \\ k^2 16 & 11 \end{pmatrix}$.
- **2.** Data $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ determinare il suo polinomio caratteristico $p_A(t)$ sapendo che $\operatorname{tr}(A) = -3$, $\det(A) = -5$ e $p_A(2) = 9$. (Attenzione: $p_A(t) = t^3 + \ldots$)
- 3. Provare che l'applicazione bilineare su \mathbb{R}^2 associata alla matrice $\begin{pmatrix} 5 & 2 \\ 2 & 3 \end{pmatrix}$ è un prodotto scalare e stabilire l'angolo formato dai vettori della base canonica rispetto a tale prodotto scalare.
- 4. Stabilire per quali $t \in \mathbb{R}$ esiste una base ortonormale di \mathbb{R}^3 costituita da autovettori della matrice

$$\begin{pmatrix} e^t & t^2 - 1 & 1 \\ t + 5 & \cos(t) & t^2 - 2 \\ 1 & 2t + 1 & 0 \end{pmatrix}.$$

- 5. Determinare il tipo affine della quadrica $10x^2 + 8xz 14x + y^2 + 4yz + 6z^2 6z + 4 = 0$.
- **6.** Esibire oppure provare che non esistono due sottospazi proiettivi di $\mathbb{P}^6(\mathbb{R})$ entrambi aventi dimensione 3 e che si incontrano esattamente in un punto.
- 7. Calcolare $\int_{\alpha} xy \cdot \sin(x^2y^2) \cdot (y \, dx + x \, dy)$ dove $\alpha : [0,1] \to \mathbb{R}^2$ è la curva data da $\alpha(t) = \begin{pmatrix} \ln(1+t) \\ \cos(\pi \cdot t) \end{pmatrix}$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Corso di Laurea in Ingegneria Civile, Ambientale e Edile

Modulo di "Geometria" — Scritto del 19/7/22 — Esercizî

1. In \mathbb{R}^3 considerare i sottospazi

$$U = \operatorname{Span}\left(\begin{pmatrix} 3\\1\\-1 \end{pmatrix}, \begin{pmatrix} 2\\4\\1 \end{pmatrix}\right), \qquad W = \operatorname{Span}\left(\begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}\right).$$

(A) (5 punti) Esibire le matrici M e N delle proiezioni ortogonali su U e W rispettivamente.

Al variare di $k \in \mathbb{R}$ porre ora $A = 6k \cdot M + 14 \cdot N$.

- (B) (2 punti) Provare che A è diagonalizzabile per ogni k.
- (C) (3 punti) Provare che A ha sempre l'autovalore 6k+14. [Suggerimento: non calcolare il polinomio caratteristico.]
- (D) (2 punti) Per k = 1 trovare gli altri autovalori di A.
- 2. Giustificare informalmente il seguente fatto generale (non è richiesta una dimostrazione formale):
- (A) (2 punti) Se $\alpha:(a,b)\to\mathbb{R}^2$ è una curva semplice e regolare, se $\ell\subset\mathbb{R}^2$ è una retta (affine), se $t_0\in(a,b)$ e $\alpha(t_0)$ non appartiene a ℓ ma è il punto dell'immagine di α più vicino a ℓ , allora la tangente ad α in $\alpha(t_0)$ è parallela a ℓ .

Considerare ora la curva orientata $\alpha:(0,+\infty)\to\mathbb{R}^2$ data da $\alpha(t)=\begin{pmatrix}t^2-t-1\\t-\ln(t)\end{pmatrix}$, che è semplice (ma non è richiesto di dimostrarlo).

- (B) (2 punti) Provare che α è regolare.
- (C) (2 punti) Calcolare la curvatura di α in α (2).
- (D) (2 punti) Calcolare per ogni t il segno della curvatura di α in $\alpha(t)$.
- (E) (2 punti) Stabilire per quali t la tangente ad α in $\alpha(t)$ è parallela alla retta ℓ di equazione 6x 91y + 2 = 0.
- (E) (2 punti) Sapendo che l'immagine di α è disgiunta da ℓ (non è richiesto di dimostrarlo), trovare il suo punto più vicino a ℓ .

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si possono consultare i libri di testo del corso, esclusivamente in originale e senza annotazioni. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

 $1. \ \, \bigcirc \ \, 2. \ \, \spadesuit \quad 3. \ \, \diamondsuit \quad 4. \ \, \clubsuit \quad 5. \ \, \spadesuit \quad 6. \ \, \diamondsuit \quad 7. \ \, \clubsuit \quad 8. \ \, \bigcirc \quad 9. \ \, \diamondsuit \quad 10. \ \, \clubsuit$

Modulo di "Geometria" — Scritto del 19/7/22 — Quesiti

Risposte ai quesiti

3. 🔷

1.
$$k \neq 3$$

2.
$$t^3 + 3t^2 - 8t + 5$$

3.
$$d_1 = 3 > 0, \ d_2 = 11 > 0; \ \arccos\left(\frac{2}{\sqrt{15}}\right)$$

4.
$$t = 3$$

- 5. Ellissoide
- **6.** Definiti in \mathbb{R}^7 i sottospazi vettoriali $U = \operatorname{Span}(e_1, e_2, e_3, e_4)$ e $W = \operatorname{Span}(e_4, e_5, e_6, e_7)$ basta prendere le immagini in $\mathbb{P}^6(\mathbb{R})$ di $U \setminus \{0\}$ e $W \setminus \{0\}$

7.
$$-\frac{1}{2} \left(\cos \left(\ln^2(2)\right) - 1\right)$$

 $1. \ \, \bigcirc \ \, 2. \ \, \spadesuit \quad 3. \ \, \diamondsuit \quad 4. \ \, \clubsuit \quad 5. \ \, \spadesuit \quad 6. \ \, \diamondsuit \quad 7. \ \, \clubsuit \quad 8. \ \, \bigcirc \quad 9. \ \, \diamondsuit \quad 10. \ \, \clubsuit$

Modulo di "Geometria" — Scritto del 19/7/22 — Esercizî

Soluzioni degli esercizî

3. \diamondsuit

1.

(A)
$$M = \frac{1}{6} \begin{pmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{pmatrix}$$
; $N = \frac{1}{14} \begin{pmatrix} 5 & 6 & -3 \\ 6 & 10 & 2 \\ -3 & 2 & 13 \end{pmatrix}$

- (B) È sempre simmetrica
- (C) Se v genera $U \cap W$ si ha $M \cdot v = N \cdot v = v$, dunque $A \cdot v = (6k + 14) \cdot v$
- (D) $10 \pm \sqrt{65}$

2.

- (A) Giustificazione informale: se la retta tangente r ad α in $\alpha(t_0)$ non è parallela a ℓ , allora i punti di r da una delle due parti rispetto ad $\alpha(t_0)$ sono più vicini a ℓ rispetto ad $\alpha(t_0)$. Ma α è approssimata al primo ordine da r vicino ad $\alpha(t_0)$, dunque lo stesso succede per α , il che contraddice il fatto che $\alpha(t_0)$ sia il punto dell'immagine di α più vicino a ℓ . Dimostrazione formale: se $\alpha=(X,Y)$ e ℓ ha equazione px+qy+c=0 con $p^2+q^2=1$ allora la distanza al quadrato $(pX(t)+qY(t)+c)^2$ di $\alpha(t)$ da ℓ ha un minimo in t_0 , dunque si annulla la derivata $2(pX(t_0)+qX(t_0)+c)(pX'(t_0)+qY'(t_0))$, ma $pX(t_0)+qX(t_0)+c\neq 0$ poiché $\alpha(t_0)$ non appartiene a ℓ , dunque $pX'(t_0)+qY'(t_0)=0$; resta provato che la giacitura $\alpha'(t_0)=(X'(t_0),Y'(t_0))$ della retta tangente r ad α in $\alpha(t_0)$ soddisfa la parte omogenea dell'equazione di ℓ , pertanto r è parallela a ℓ ora
- (B) X'(t) si annulla solo per $t=\frac{1}{2}$ ma $Y'(\frac{1}{2})=-1$
- (C) $\kappa(2) = -\frac{2}{37\sqrt{37}}$
- (D) Positiva su $\left(1-\frac{1}{\sqrt{2}},1+\frac{1}{\sqrt{2}}\right)$, nulla agli estremi, negativa fuori
- (E) $t = 7 e t = \frac{13}{12}$
- (F) $\alpha\left(\frac{13}{12}\right)$