Teoria dei Rodi

$$
23 / 5 / 2019
$$

Smpary presentation of 3-macifolers.
Deha filling

$$
T \cong S^{1} \times S^{j} \quad H_{1}(T)=\mathbb{Z} \times \mathbb{Z}=\langle\alpha, \beta \mid[\alpha, \beta]\rangle
$$

$M^{(3)}$ manifeld; $\partial M \partial T, \gamma C T$ s.c.c. non-trial

$$
M(\gamma)=M U_{f} \underbrace{\left(D^{2} \times S^{1}\right)}_{\text {solid tonas }} \quad \begin{aligned}
& f: \partial D^{2} \times S^{\prime \prime} \rightarrow T \\
& f\left(\partial D^{2} \times i \times i\right)=\gamma
\end{aligned}
$$

Fact: depends on γ ouly. Reason: for, fre as above $\rightarrow f_{1}^{-1} \circ f_{0}: \partial D^{2} \times S^{1} S$ ucops $\partial D^{2} \times i+i$ to itself. Chaicn: it extend's to self-home of $D^{2} \times S^{\prime}$. Implis conderin:

$$
\begin{gathered}
N_{0}=M U_{f_{0}}\left(D^{2} \times S^{1}\right) \\
\downarrow^{(i d, F)} \\
N_{1}=M U_{f_{1}}\left(D^{2} \times S^{1}\right)
\end{gathered}
$$

well-def homeo:
$x \in T, u \in \partial D^{2} \times S^{1}$ souse ptivNo
meaus $x=$ fo (x); wopped to $x \in T, F(x) \in \partial D^{2} \times S^{5}$; same in N_{1} if $x=f_{1}(F(n))$

$$
\text { i.e. } x=f_{1}\left(f_{1}^{-1} \cdot f_{0}\right)(x)
$$

$$
\therefore \text { ic. } x=f_{0}(x) \text {. }
$$

Existence of F : $u p$ to isotopy can anm $f_{1}^{-1} \circ f_{0}$ is id $\frac{p u n}{0 n}$ reflection - but refection cxtands so arlop $f_{1}^{-1} \circ f_{0}=$ id on $\left.\partial D^{2} \times ? *\right\} \Rightarrow$ can extend it to it on $D^{2} \times ?+$?

aut $D^{\prime} \times S^{1}$ doug wendian to fer D^{3}; hore $S^{2} \rightarrow S^{2}$ which extud, radidly to D^{3}. $\gamma \subset T$ slope su T.

Giveu $L \subset S^{3}$ coll Dehu smpery doup L a Dehn filling of $E(L)=S^{3}, \dot{U}(L)$; $\partial E(L)=T_{1} \cup \ldots \cup T_{k}$ all filled to pet
clored mamifold + oniatible
Recall: for kuot K pivilaged besis $H_{1 s}(\partial V(K))$

$$
\partial E(I) \rightharpoonup \partial U(K) \supset \gamma \longleftrightarrow \pm\left(p \mu_{0}+q \lambda_{0}\right) \longleftrightarrow P / q
$$

Rem: iuteger sugeny = supay doug sloper that are lougitubes
\rightarrow frauned link defines a 3-manifld.

Exauples: (1) ∞-sumpuy on K pives S^{3}
(2) 0-surgey on winkot

attading $D^{2} \times S^{1}$ to $D^{2} \times S^{\prime}$ doy id of $\partial D^{2} \times S^{11}$ $\Rightarrow S^{2} \times S^{1}$.
(1) ± 1 filling of untunst:

Attaching a 2 -handle L. 4 -manifld X

$$
f: \underbrace{\partial D^{2} \times D^{2}}_{\text {solid tolus }} \rightarrow \partial X
$$

New boundany: $(\underbrace{D^{2} \times \partial D^{2}}_{\text {solid xonus }}) \cup_{\frac{\partial D^{2} \times \partial D^{2}}{\text { toms }}}(\partial X \backslash \operatorname{In}(7))$
Exacise: actuolly intega Dehn sugpery (filling unve is toupitude).
$\Rightarrow M^{3}$ prosated as suypeny dong $L \subset S^{3}$
gives rediration of $M=\theta\left(D^{4}\right.$ with 2-kandles $)$

$$
\Rightarrow M=\partial(\text { sindly connected 4-ufled })
$$

Thum(Rokhlin-Likoorish):
every closed oricutable $火^{(3)}$ can be proutsd by cintege sungery doug $L \subset S^{3}$
(actually: with iudividual componerts ruku-ttod \& coefficients ± 1)
 of framing.

Fact: Kanffram bradeet is invaicont far Jramed links i msing it t extusious can get "quantun" irvaciants of 3-wavifolds using ase eppoach similas to knot invariouls through to Kiaby veoves that velote Ifpur pusentetions of the same mamfold.

Kinby wover: i) stabilization adding $\longrightarrow \pm 1$ as above
(the anociated 4-maniftc
is chaugled as $X \sim \Delta X\left(\not \mathbb{P}^{2}(c)\right)$

- avologous t har tle stiding: of

(Martell: local version of Kinby woves)
\exists many proofs of existace of smpery reabization.
Heepaand splitting of closed oriantable $M^{(s)}$ is
- $\sum \subset M^{(3)}$ smeface of gemus 9 s.t. culting M doug Σ get two handle bodies
- $M=H_{0} U_{f} H_{1} \quad H_{0}, H_{1}$ hardlebadies, $f: \partial H_{1} \rightarrow \partial H_{0}$.

Fact: Heegaad splkips exirt:

Existence of Heegead splittings shows 3-manifold theory is contained ric the ntandy Aut $^{+}\left(\sum_{g}\right)$ (self-honeos/isotopy) -

Dehn twist: \sum smface oriented, cpt but possibly $\partial \Sigma \neq \varnothing$.

$$
\gamma \subset \sum \quad \text { s.c.c. } \gamma \cap \partial \Sigma=\varnothing \text {. }
$$

well-def/isotopy for umoniented or
Thur: Aut ${ }^{+}(\Sigma)$ is geverated by Dehn twosts.
Assming this I show existence.
Prop: H_{0}, H_{1} haudbbodis, \sum suface al same gems $g: \partial H_{n} \rightarrow \Sigma, \quad f: \Sigma \rightarrow \partial H_{0}$

$$
\begin{aligned}
\Rightarrow H_{0} U_{f_{0}} H_{1} \cong & H_{0} U_{f_{0}}(\Sigma \times[0,1)) U_{g_{1}} H_{1} \\
& f_{0}: \sum x\{0\} \rightarrow \partial H_{0} \quad(x, 0) \mapsto f(x) \\
& g_{1}: \partial H_{1} \rightarrow \sum x\{1\} \quad x \mapsto(g(x), 1)
\end{aligned}
$$

(sivilas to first proof)
Proof: take $S^{3}=H_{0} \cup H_{1}$ trivial Heepard splitiug

Want to produce suggeng presutstion stanting fron $M=H_{0} U_{f} H_{1}$.

Suppose first $M=H_{0} U_{\tau_{\gamma} \pm 1} H_{1} . \quad \tau_{\gamma}: \partial H_{1} \rightarrow \partial H_{0}$
Take prollal copy γ^{\prime} of r pasted inside H_{1} and U neighborhood of γ^{\prime}; claim: $\tau_{\gamma}: \partial H_{9} \rightarrow \partial H_{1}$ extends to $F: H_{n} \backslash U \rightarrow H_{1} \backslash U$.

$$
A \times[-1,1]
$$

On $A \times[-1,1]$ acts as on $\gamma \times[-1,1]$

$$
\begin{array}{cc}
M \backslash U= & H_{0} U_{\tau r} \quad\left(H_{1} \backslash U\right) \\
\downarrow & \sum_{\bar{x}}^{J} \\
S^{3} \cup U= & H_{0} \quad U_{i d} \quad\left(H_{1} \backslash U\right)
\end{array}
$$

seell-defined hours $\Rightarrow M$ obtained by Drin Filling. $S^{3} i U$ along cave that is tho inge mince F of mention of U in H_{1} :

Statement: con take ate sunny coifs ± 1 or der components of L trivial.

Now take $M=H_{0} U_{f} H_{1} \quad f=\tau_{0} \circ \ldots \circ \tau_{m}$

$$
\tau_{i}=\tau_{\gamma_{j}}^{\varepsilon_{j}} \quad s_{i}= \pm 1
$$

Using repeatedly techincol proposition see:

$$
M=H_{0} U_{\tau_{0}^{(0)}}\left(\sum \times[0,1]\right) \cup \ldots \cup\left(\sum \times[m-1, m]\right) \cup_{\tau_{m}^{(m)}} H_{1}
$$

Repeating what dove for one twist:

$$
\begin{aligned}
& M \backslash\left(U_{0} \cup \ldots \cup U_{m}\right)= \\
& =H_{0} U_{\tau_{0}^{(0)}}\left(\sum \times[0,1] \backslash U_{0}\right) U_{\tau_{1}^{(1)}} \ldots \cup\left(\sum \times\left(0,1 \backslash \backslash U_{m-1}\right) U_{\tau_{m}^{(m)}}\left(H_{1} \backslash U_{m}\right)\right. \\
& \text { id } \downarrow \\
& \quad \downarrow F_{0} \\
& H_{0} U_{i d}\left(\sum \times[0,1], U_{0}\right) U_{i d} \ldots U
\end{aligned}
$$

Fo extesion to $\tau_{0}^{(0)}$ as above mop well- def howeo and tapet is $S^{3} \backslash\left(\sigma_{0} \cup \ldots \cup \sigma_{n}\right)$

each U_{j} is kuot meihbrahood in $S^{\prime 3}$ \& anre to Dahn file ou it to get M is a \pm loupitude priviteped (as above).

Wlog: cau suppose conponents individadly
mankuoted:

Then: Aut ${ }^{+}(\Sigma, \partial \Sigma)$ is $D=$ its subgroup geverated by Dehn tuists.

Proof: by induction on $g\left(\sum^{\hat{N}}\right)$
$(\Sigma=$ closed sunface obtained fron $\Sigma \ldots$)
Basis of induction: $g=0, \sum=$ pactired sphae coup proof essiug braid theony omitted.

Iuductive step: $g>0 \Rightarrow \exists \alpha \subset \sum$ non-sep. s.c.c. Take $f \in A_{n t}+(\Sigma)$, cousider $\alpha, f(\alpha)$.

Key arment: show that $\exists d \in D$ s.t.

$$
d(\alpha)=f(\alpha) .
$$

Condlaniou: $\left(d^{-1} \cdot f\right)(\alpha)=\alpha$; with work can arme
$d^{-1} \cdot f$ is iod on α
\Rightarrow car cut \sum doup α gething suolla gencs with $d^{-1} \circ f$ wide-def on it; apply shduation Whena conclusion.

