Teoria dei Nodi
9/5/2019

Piempir quertionari sul corso.

$i \quad i$
isotopg throgh same.

$$
B_{n} \ni \beta \longmapsto \hat{\beta}
$$

Thu: \forall ovated link $L \exists \mathrm{~m}, \phi \in B_{M}$ s,t. $\hat{\beta}=L$.
Thim: $\hat{p}_{1} \cong \hat{\mathcal{\beta}}_{2}$ iff $\dot{F}_{1} \mathcal{\beta}_{2}$ Mackor egariv.

- conjugation
- stakilizatioce $B_{m} \nabla \phi \longleftrightarrow \phi \cdot \sigma_{n}^{ \pm 1} \in B_{m+1}$.

Def. couplete closm of k

Def: bioided link: oriented KUL s.t. $L \cong$ wetust $S^{3} \backslash L \cong B^{2} \times S^{1}, P_{L}: S^{3} \backslash \longrightarrow S^{1}$ P_{L} wocodomic increanily on K.

Rear: conplete domve is braided link.
Prop: broided links/intopy $=$ baids/corjugation.

Prop: rif for KUL we have P P_{L} / K man-decreaning + rea-coutation any cocops \Rightarrow braited/isotopy.

Threading:

- choice of overacs for Lapran D is $S, E \subset D$ s.t. dt $[s, e] \subset D$ contain ornarain, ouly, all $[C, \delta] \subset D$ ruchaomings ouly (magbe reoue).'

Given D,S,E call threading this poons:

- choose $\forall C \mathbb{R}^{2}$ lop oriented that sopacoi'es S from E leaving S to its left \& traurrubal to D
- turn Dur icto link KUN

Prop: such a K, A is braided link (\Rightarrow Hexauda).
Proof: isotope γ to be straight line in \mathbb{R}^{2}

ovaancs are all cowtained in $\theta=+\Sigma \& \theta=\pi-\Sigma$
except 合 隹
undeacs one dl oontaind is $\theta=-\varepsilon \& \theta=\pi \in \Sigma$
except $\uparrow_{1}<1$
Since θ / k is non-ded + not contant on an oougro it's braided.

Reusark: Markov moves extud to tho couplete closure of a braid \Rightarrow ruaken sease to speak about Markor epuivolence for braided links.

Makov's then follows from these:
Thu 1: the complete clasue of $\beta \in B_{n}$ is the threading of a diagram of \hat{P}.

Thm 2: (Q) aney two threachiegs of same diagram are Markov equirdent
(b) two diaplacus of instopic orleiPd links are Mouctor epcuiblerd
$\hat{p}_{1} \cong \hat{\beta}_{2} \quad$ choose $D_{1}, D_{2} \quad$ s.t.
\widehat{P}_{j} is threadiug of D_{j} (Thar1)
on $)^{\nu}\left(\exists\right.$ threadiugs $\left(D_{1}, A_{1}\right),\left(D_{2}, A_{2}\right)$ that as Rakov- quiv (Tmid (b))
but by Prop. ($\left.D_{j}, A_{j}\right)=B_{j}^{\prime}$ heuce
B, (B2 aue Marko epmili:
and $\hat{p}_{j} \widehat{\beta}_{j} \widehat{j}^{\prime}$ are Hakor epui (Thu 2(al)
$\Rightarrow \hat{\beta_{1}}, \widehat{\beta}_{2}$ Markou epais
\Rightarrow Pri Br Markou epuiv.
Ther 1: given any $\neq, \hat{\beta}$ is threadiup of some diagram of \hat{p}.

Proof: riew dosuse of ϕ as being drawn re a cube alvost enticely on the sufface except whae f is:

isotope on the surface of the upper face of the auk the strands so to wake β straight:

if β is riemed $k:\left(D^{2},\{1, \ldots, n\}\right) S$ then the strands on mapper face of cube ane

Exacise: conviuce yomself that
threading of this ds the couplete closur of P.

Ther 2(a): Two threadings of same diag. are Konkor-epuiv. Pno of:
Claim 0: givea S,E doice of oveacs for D if r, γ dre canves seporativg S from E leaving S to the left then they are sebted by thase moves:
(I)

(II)

(II)

(I).(II) ganate isotopy seel. SUE

Mut how that ming III we can transom γ^{\prime} to a carve isotopic to γ sal. SUE. Ia fact. can isotope so that:

$\stackrel{a}{9}$
c.
es
-
γ^{\prime} bouds a
bocuded disc containg E wheuce it nosses each li au eren nuba of times

\rightarrow isotopic to r sel SUE.
Claien 1: if $(K, A),\left(K, A^{\prime}\right)$ are theachigs constmated from different r,gr for the same S,E then ane Makov - equiv. Murt show I, II, II obove pise Mankov epuiv.
(I)

(I)

Type II

16 ponible corfiss far type of aonsing + riertotious. Some give isotopic theadiugs:

In som cans it's not isotopy:

(7)

Fact: when (II) does not give rootopy I can
factor it throaph tgpe (I) + (I)'s giving iostopy. For the pevious exaygle:
(I) $\sqrt{ }$
(II)

(III)

Execise: draw picture a convince jouselt hoot it's costray.
this is isotopy.

Claim 2: if (S, E) choice of oraarcs for D $\& \in D, \underset{\sim}{f} \notin \operatorname{SUEU}\{$ armices $\}$

$$
\Rightarrow \exists \exists^{\prime}(\widetilde{S}, \tilde{E}) \text { 1. } \check{\mathscr{S}} \mathrm{S} \cup\{d\} .
$$

Proof: I can beloug to ovenare or muthare

same if on curckare.
Couclunioa: given $(S, E),\left(S^{\prime}, E^{\prime}\right)$ uр to suall patanlotion can assume oll $S, E, S^{\prime}, E^{\prime}$ mutuolly dinjoint. By Clain 2 (taualopue fore) \exists STE Ehoice of overes s.t

$$
\dot{S}^{\prime} \supset S U S^{\prime} \quad E^{\prime} \supseteq E U E^{\prime} \text {. }
$$

If choose \mathcal{r} aparing \tilde{S} from \tilde{E} also xparotes S from $E, \quad S^{\prime}$ from E^{\prime}
but threadiug depends on γ ouly so by claim 1 any theading for (S, E) and pon
($S^{\prime} E^{\prime}$) is M-equiv. to shading prem by γ. ,
Thu 2(b): two diagrams of isotopic links have M-equir. threediups.

Proof: we actually show that if D, D^{\prime} are related by one Reideweinten wove then for suitable device of $S_{1} E, S_{1}^{\prime} E^{\prime}$ and of r, r^{\prime} the threactiugs are actually dwotopie.
(This suffices by then 2 (a) because siffert choices give M-epaiv. threadips.)
$R_{I}:$

the rect of SUEUR for from here

isotopic

RII: choose all of SUEU' far frock wove.

Oricutation of curdle are car be chosen like this rep to reverniy
reave.
choice of $S, E, S_{1}^{\prime} E^{\prime}$ leave.

choice of $\gamma_{1}, \gamma^{\prime}$ depends dso on orientation of arne:

