Teorie dei Nodi 18/4/19
I, $J^{\prime}$ systems of spheres piving prine bancupations
Assunue every $S \in I$ meets $J^{\prime}$
wery $S^{\prime} \in J^{\prime}$ meets $S$

+ thene is some thousverse intorsection

Aim: reduce trausverse interuection.

Take $S_{i}^{\prime} \in J^{\prime}$ with $S_{i}^{\prime} \cap J \neq \varnothing$.
Toke $r \in S_{i}^{\prime}$ innemmort aile in $S_{i}^{\prime}$

$$
\rightarrow \gamma=\partial \Delta, \Delta \subset S_{i}^{\prime}, \gamma \subset S_{i}^{\prime} \cap S_{j}, \Delta \cap J=\gamma \text {. }
$$

Let $B_{i}$ be component of $S^{3} \backslash S_{i}$ with $\Delta \subset B_{j}$.

It conlat happen thet $B_{i}$ contrins some then $S_{l}$ but then:

redaa to $\mathrm{Se} \sim \mathrm{mlog}$ anaue $B_{i}$ contains no $S_{l}$.


Recall both $S_{j}$ and $S_{i}^{\prime}$ cross $K$ twice: so 3 coser:

intusection
seduced

siace $S_{i}$ gives oplikicys into mon-trinisal liks $\rightarrow T_{2}$ countivi. $\Rightarrow T_{1}$ munt be tringo hecause Si splits rinto primes



* Since $S_{j}$ splits ito primes mast have $T_{1}$ or $T_{2}$ taviel


Braids and ropescatotion of links vie braids.

$$
P_{1}, \ldots, p_{n} \in \text { int }\left(D^{2}\right) \text { fixed pts }
$$

Def1: $B_{m}=\{T \subset D_{x}^{2}[0,1]: T \cong \underbrace{[0,1] \omega \ldots[0,1]}_{\text {s.t. }}$,
$\partial T=\left\{p_{1}, \cdots, p_{n}\right\} \times\{0,1\}$ s.t.
if $\pi: D^{2} \times[0,1] \rightarrow[0,1]$ then
$\pi / \alpha$ mowntowic for all $\alpha \subset T\}$ /isotopy
throuph
such 'f's


Defz: $\widetilde{B}_{n}=\left\{h: D^{2} \rightarrow D^{2}\right.$ hoculo: $\& /_{\partial D^{2}}=i A_{\partial 0^{\circ}}$ $\left.h\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)=\left\{p_{1}, \ldots, p_{n}\right\}\right\}$
isotopy through
Adually $B_{m}=\widetilde{B}_{m}$ :
$\tilde{B}_{m} \longrightarrow \Xi_{m}$

$$
h: D^{2} \rightarrow D^{2} \quad h / \partial D^{2}=i \phi \quad 1\left(\left\{p_{1}, \ldots, p_{M}\right\}\right)=\left\{p_{1}, \ldots, p_{m}\right\}
$$

$\rightarrow$ I isotopie to id́d ${ }^{2}$ nel $\partial D^{2}$

$$
\Rightarrow \exists\left(h_{t}\right)_{t \in[0,1]} \quad h_{0}=i s t \quad h_{1}=h
$$

(of couse: $h_{t}$ doen not leare $\left\{p_{1}, \cdots, p_{m}\right\}$ risvanians)

$$
T=\left\{h_{t}\left(\left\{p_{1}, \ldots, p_{m}\right\}\right) \times\{t\}: t \in[0,1]\right\}
$$


$B_{m} \rightarrow \tilde{B}_{n}$ take $T \subset D^{2} \times[0,1]$

$$
\begin{aligned}
& \Rightarrow T \cap\left(D^{2} \times\{t \xi)\right.=\left\{p_{1}^{(t)}, \ldots, p_{n}^{(t)}\right\} \times\{t\} \\
& p_{j}^{(0)}=p_{j}^{(1)}=p_{j} \Rightarrow \exists\left(h_{t}\right)_{t \in[0,1]} \\
& h_{0}=i d \quad h_{t}\left(D D^{2}=i d \quad h_{t}\left(\left\{p_{1}, \ldots p p_{m}\right\}\right)=\left\{p_{1}^{(t)} \ldots, p_{\mu}^{(t)}\right\} .\right.
\end{aligned}
$$

(procuote isotopy to auchient isotopy)

$$
[T] \sim \Delta\left[h_{1}\right] \in \tilde{B}_{n} .
$$

Grows structure on $B_{n}$ :

$$
\frac{\beta_{1}}{\beta_{1}} \cdot \frac{\| \ldots 1}{\beta_{2}}=\frac{\frac{\| 1.1}{\beta_{1}}}{\frac{\beta_{2}}{11-1}}
$$

Def: $\quad \sigma_{j} \in B_{n} \quad j=1, \ldots, n-1$

$$
\sigma_{j}=\left.\left.\left.\left.\right|_{\cdots} ^{1}\right|^{j-1}\right|^{i+1}\right|^{i+2}
$$

Thu: $B_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1}\right| \quad \sigma_{i} \sigma_{i}=\sigma_{i} \sigma_{i}$ if $|i-j| \geqslant 2$ $\left.\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i t}, \sigma_{i} \sigma_{i+1} \quad i=1, \ldots n-2\right\rangle$

Proof: $\sigma_{1}, \ldots, \sigma_{m-1}$ generate (use geometric def. of $B_{n}$ ):
Take $\beta$ braid; up to isotopy there lo a tollest coming

$$
\begin{aligned}
& \beta=
\end{aligned}
$$


$\Rightarrow \beta=\sigma_{i}^{ \pm \prime} \cdot \beta^{\prime}$.
the relotions hold tnue:


Relatins suffice: take wonds $w_{1}, w_{2}$ in $\sigma_{1}^{ \pm \prime}, \ldots, \sigma_{m-1}^{ \pm \prime}$ supposse they give the saue peomutric braid e.e. thein diagrams are releded by plamar irstopy throupi monotime diaprams $\rightarrow$ Reidemeriton cuoves thorough monotome diaprocus.

Notice: if a monotomic diogram has all cnomiys at different heights then it detenwins a word in $\sigma_{1}^{ \pm 1} . . \sigma^{\neq 1}$


for each of them: 6 confip's of crossings:


Fact all 12 conss trouslote into a replacemut of a word of teupth 3 by avathen one riyglied by $\sigma_{i} \sigma_{i}{ }_{i} \sigma_{i}=\sigma_{i+1} \sigma_{i} \cdot \sigma_{i+1} . \quad$ E.g.


11
$\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}$
$\sigma_{i}^{-1} \sigma_{i+1}^{-1} \sigma_{i}$


Remark: there is a noted $B_{n} \longrightarrow S_{m}$

$$
\begin{array}{ll}
S_{m}=\left\langle\tau_{1}, \ldots, \tau_{m-1}\right| & \tau_{i} \tau_{i}=\tau_{i} \tau_{i} \quad|i-j| \geq 2 \\
& \tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1}\left|\tau_{i} \tau_{i+1}, \tau_{i}^{2}=\tau\right\rangle
\end{array}
$$

given by $\quad \sigma_{i} \longmapsto \tau_{i}$


Def: if $\beta \in B_{m}$ is a braid I call closure of $\beta$ the oriented link $\hat{\beta}$


Thm (Alexarder): every oricuted livk is $\hat{\beta}$ fro some m aud some $\beta \in B m$.
(Acveror proofs ria bridge penntation + Seifent sirface...)

Rem: there is a natund inclusion $B_{m} \longrightarrow B_{m+1}$


Def: Markou moves on braids:

- coujupatiox : $\beta \in B_{n} \longmapsto w \beta \omega^{-1} \in B_{n}$
- stabilization $\beta \in B_{m} \subset B_{m+1} \longmapsto \beta \sigma_{m}^{ \pm 1} \in B_{m+1}$

We say $\beta \in B_{n}, \beta^{\prime} \in B_{n^{r}}$ are Markov equinlut of uelted by conaticotion of aboves and invares.

Remank: Markov epuivalent braids have vsotopie closmes:

staktization: $\quad \beta \sigma_{m}^{ \pm 1}=$


R applies

$$
\approx \widehat{\beta}
$$

Thm (Mantoo): $\beta \in B_{m}, \mathcal{F}^{\prime} \in R_{m^{\prime}}$ $\hat{\beta} \cong \widehat{\beta^{\prime}} \Longleftrightarrow \beta_{1} \beta^{\prime}$ are Markov equivolut.

Proofs after H. Montom
Def: if $\beta \in B_{n}$ I call couplate closuse of $\beta$ the orieuted liuk $\hat{\beta} \cup L$ where $L$ is the axis of $\hat{\beta}$ oriectet o.t. $\hat{\beta}$ wrops positively anound it:

(1) = rention lime upwand

Note $L=$ trivial kuot $\Rightarrow S^{3} \backslash L=B^{2} \times S_{\theta}^{1}$
and $\widehat{\beta} \subset B^{2} \times S_{\theta}^{\prime}$ in such a way that the enociatol projection $p_{L}: S^{3}{ }^{\prime} L \rightarrow S_{\partial}^{11}$ ratricts to be stridly
inceasivp to each conpocurt of $\widehat{\beta}$. Moreones $\overline{B^{2} \times\{\theta\}}=$ clond dix bouded by $L$.

Def: an oxierted link KUL is braided if $L$ is trivial and $S^{3} \mid L \cong B^{2} \times S^{1}$ so that the arrociated projecction Pl matricts to be strictly therosing on each conpwnentof $K$. + compatibl arsentation....
Remank: every baided link detenuius a braid up to conjugation:


- choose livel dine $B^{2} \times\left\{\theta_{0}\right\}$ Whare to cut
- label poils $K \cap\left(\mathcal{B}^{2} \times\left\{\theta_{0}\right\}\right)$ as $1, \ldots, n$ MD baid
both devicer made ouly give confingation.

Prop: $\beta \in B_{n}, \beta^{\prime} \in B_{m}$, have isotopic complete dosses diff they are conjugate in $B_{n}$. "if" easy

"only if": Remnant joint curate
Plop: if $(K, L)$ is oriented link with $L$ trivial and $S^{3} \backslash L \cong B^{2} \times S^{\prime 1}$ s.t. $\left.P_{L}\right|_{J}$ nou-denearing and mon-comtant for ole cousouents J of $K$ Hen (K.L) is braided sup to isotopy.


Def: if $K$ is an oriented link diagram I call choice of overaces the cloice of point on $K$ $S$ ("start") E ("end") 1.t. or $K$ each ac from $S$ to $E$ contains overcoming, only and each arc from $E$ to $S$ contains undkursings only (possibly none):


$$
\begin{aligned}
& S=\text { "stout" } \\
& E=\text { "sud" }
\end{aligned}
$$

