Teoria dei moch.
16/4/19
Than: $\rho\left(K_{1} \neq K_{2}\right)=\rho\left(K_{1}\right)+\rho\left(K_{2}\right)$
$\leq \leq:$

$$
\rho\left(\Sigma_{1} \# \Sigma_{2}\right)=\rho\left(\Sigma_{1}\right)+p\left(\Sigma_{2}\right) .
$$

\geqslant Take 2 that redizes $g\left(K_{1} \# K_{2}\right)$.
Take $S C_{S} S^{3}, S \cong S^{2} s l . \quad S n\left(K_{1} \# K_{2}\right)=2 p t_{s}$

$$
S=\partial D_{1}=\partial D_{2}, \quad D_{i} \cong D^{3}, \quad K_{i}=\left(K_{1} \# K_{2}\right) \cap D_{i}
$$

U an anc on ∂D_{i}.
I suppos Sn Z:

$\Rightarrow \sum \cap S$ is a colaction of aindes +1 are. (totos of 2 andppoints).

If no ande: $\sum=\Sigma_{1} \# \Sigma_{2}, \sum_{i}$ Seifetfoti

$$
\Rightarrow \rho(\Sigma)=\rho\left(\Sigma_{1}\right)+\rho\left(\Sigma_{2}\right) .
$$

Him: rencove iutsection cindes vithout increasily penus of Σ (caunot derease).
$O_{M} S^{\prime}$ there ove $\geqslant 2$ innenmost ancles CoGouds diar not condainity othar circles
(prokaps oue to both sites)
$\Rightarrow \exists$ inneneot cizch γ boundiy $D \subset S$ s.t. D does not contai- onc $\Rightarrow D \cap K=\varnothing$.

supn 2

$\sum_{T 1}^{\prime}$ still ar owiected smface bourded by $K_{1} \# K_{2}$. Thre coses:

1) $\sum \beth^{\prime}$ connected
2)

$$
\begin{array}{rlr}
\Sigma^{\prime}=\sum^{\prime \prime} \| \sum^{\prime \prime \prime} & \text { 2.1) } \sum^{\prime \prime \prime} \neq S^{2} \\
2=k & \quad \begin{array}{l}
\text { 2.2 }
\end{array} & \sum^{\prime \prime \prime} \cong S^{2}
\end{array}
$$

1) $\quad x\left(\Sigma^{\prime}\right)=x(\Sigma)+2 \Rightarrow \rho\left(\Sigma^{\prime}\right)=\rho(\Sigma)-1$ absuad
2) $\rho\left(\Sigma^{\prime \prime}\right)<\rho(\Sigma)$ a bsard
3) $\rho\left(\Sigma^{\prime \prime}\right)=\rho(\Sigma)$: peoceed with $\Sigma^{\prime \prime}$ matil sull intersections, disopeen. cincler

Today: "kuots" $=$ "orierted kuots"/irolopy
Def: K is priwe if non-trivial and $K=K_{0} \# K_{1}$

$$
\Rightarrow \text { oue of } K_{j} \text { is trinal }
$$

Def: if $D \cong D^{3}$ we say $\alpha \subset D$ i, tauple if it is a propuly cutetaled acion D; (ouiuted) $T=(D, a)$; detine $T=$ knot in $S^{3}=\alpha \cup \beta$ given by any eutudding of D in $S^{3}, \beta<2 D$ any are joining the ends of α.

Fact: well- +1 up to sooty.
$K_{0} \# K_{1}$ defined as:
\rightarrow find D sit. $\left(D, D \cap k_{0}\right)=-\infty$
\rightarrow replace $\left(D, D \cap K_{0}\right)$ by $(D, \alpha)=T$
s.t. $\overparen{T}=K_{1}$

Prop: $K_{0} \# K_{1}=K_{1} \# K_{0}$
Prop: $\left(K_{0} \# K_{1}\right) \# K_{2} \cong K_{0} \#\left(K_{1} \# K_{2}\right)$
If: $\quad K_{0} \#\left(K_{1} \# K_{2}\right)=$

$$
-\left(K_{0} \# K_{1}\right) \# K_{2}
$$

About satellites:
$P \subset D^{2} \times S^{1}$ cincle that cannot be tooteped to be dinjount from $D^{2} \times P+3$

$$
f: D^{2} \times S^{1} \longrightarrow U(K)
$$

$\Rightarrow J=f(I)$ satellite with comparion K and fa*ence.

True satellite if P is not cone of $D^{2} \times S^{\prime \prime}$
Fact: tme satelite of non-trivial is not-trivial.
Iroof says: satellite of wou-thi, is nou-trivise $\stackrel{O n}{=}$ Frivial knot is sardelith of itself ouly.

Irop: if $K_{0} \# K_{1}$ trivial \rightarrow both K_{0}, K_{1} trivial.
If 1: $g\left(K_{0} \# K_{1}\right)=0 \Rightarrow g\left(K_{0}\right)=j\left(K_{1}\right)=0 \Longrightarrow$ 回
Pf2: $K_{0} \# K_{1}$ is satcllite of bith

Pnop: $K_{0} \# K_{1} \cong K_{1} \rightarrow K_{0}$ trivial (ria gemus).

Prop: gemus-1 kuots one prime. (via penus).
Pnop: $\quad b(K)=2 \quad$ (bidge index)
$\Rightarrow K$ prime.
If: $b(K)=2 \Rightarrow \exists \Sigma \cong S^{2} \quad \sum=\partial D_{0}=\partial D$,

$$
\left(D_{j}, D_{i} \wedge k\right)=
$$

I take $\sum^{D}=$ honizontol plane
$D_{1}=$ upper holf-plame with

$$
\begin{aligned}
& K \cap D_{1}=\beta_{1}, \beta_{2} \\
& \quad \beta_{j} \subset \partial \Delta_{j}, \Delta_{i} \subset D_{1}, \partial \Delta_{i} \mid \beta_{j} \subset \Sigma
\end{aligned}
$$

and $K \cap D_{0} \subset \sum, K \cap D_{0}=\alpha_{1} \cup \alpha_{2}$.

Take S s.t. $S h K=2$ pts; can choose there $2 \mathrm{p} / \mathrm{s}$ to be the ends of α_{1} :

Suppoce except at the ends of α,

$$
\operatorname{si} D, \quad S \| D_{i}
$$

Suppose $S \cap A_{j}$ coubeins cinde; take innermeor our

sagen

Thuefer can asmere $S \cap \Delta_{i}$ contais no cirles.
If there is a cincle of $S \cap \sum$ that don not sepercte α_{1} from α_{2} then it bounds on \sum a dise disjoinf from $K \Rightarrow$ gain can sugger to veduce interection.

Eraturly Sn之 collection of pardlal cirder spanoterg α_{1} from α_{2}

If there is ware than ous cirle two of then are pardlel on S (alzo on \sum). Take two conseative ones on S^{\prime} : Topethen
bound onantus $A \subset S$; dro bound onnlus
$A^{\prime} \subset \sum$ (could hagpee that A^{\prime} weets S
not of its J_{ody} beat A
weits \sum at ∂ ouly)
Now $A \cup A^{\prime}=T=2 \pi$

cas push II below D thus sewornigy intensection

Eventually $S \cap D=1$ cinde, $S \cap \Delta_{j}=\varnothing$

S'trivid splere sepantiup 2 , frou rent of K
\Rightarrow given trivial splitring_
Prop: if $K_{p, q}$ is non-triviol ((p, q) coprime, $\left.p, q \geqslant 2\right)$. then $K_{p_{1} 9}$ is pricme-

Proof: suppose $K_{p, r}=T=\partial \pi_{1}=\partial \pi_{2}$.
Take $S \cong S^{2}, \quad S \cap K_{p, 1}=2$ pts
suppose $S \notin T$. Take rcSnT innermort γ cincle on S^{\prime}.

$$
\Rightarrow \gamma=\partial D \quad D C \pi_{1} \quad D \cong D^{2} .
$$

Possibilities:

1. $\gamma=\partial \Delta, \Delta C T \Rightarrow \Delta \cap k_{p i q}=\varnothing$
$\triangle U D=S^{2}=\partial B^{3}$ can isotppe D acion B^{3}
part of A sedaciug intencection
2. $\gamma \| K_{p, q}, \gamma \cap K_{p, p}=\varnothing$
$\Rightarrow K_{p, 9}=' \gamma$ up to irotopy
but bounds $D \rightarrow$ thivial : absurd.
3. $\gamma \cap k_{p, p}=2$ pts.

Cut T open aloup Kp,s gettiug anmulus; look at γ in this anmules:

two cirdes: ho

absurd

$\gamma=\gamma \Delta$ $\Delta C T$

S gives trivid spliking.
By what aid bepe: $K_{1} \# \ldots \# K_{m}$ well-deficed.
Thun: if K is non-trival then K can be minjualy exprosed as $K_{0} \# \ldots \# K_{m}$ with K_{i} prive up to reoaderiup.

Proof: existence of decouporition from genes.

Unipuewers. Note first that a decomposition

$$
K=K_{0} \# \ldots \# K_{m}
$$

can be realised by a system $I=S$, u... US S where $S_{i} \cong S^{2}, \quad S_{i} \cap S_{i}=\varnothing$ fo $i+i$, SinK $=2$ pts, the coupocents of

$$
S^{3} \backslash\left(S_{0} \cup \ldots \cup S_{m}\right)=G_{1} \cup \ldots \cup G_{n}
$$

and $K_{j}=\overline{\left(C_{j}, C_{j} \cap K\right)}$:

namely $t_{j}=C_{i j \cap} U$ one arc on each component of θG_{j}.
follows from fact that \# well-defined and can be realized as explained above tracking
 with

Suppose

$$
\begin{aligned}
& J=S_{1} \cup \ldots \cup S_{m} \\
& J^{\prime}=S_{1}^{\prime} \cup \ldots \cup S_{m^{\prime}}^{\prime}
\end{aligned}
$$

give two expunious of K as $\#$ of primes.
Call suppers that any two $S^{\prime} \subset J, S^{\prime} \subset J^{\prime}$ either coincide on ane trausrena (possibly disjoint).

Claim: if there exists $S^{\prime} \subset J^{\prime}$ s.t. $S^{\prime} \cap J=\varnothing$ then there exints $S \subset J$ s.t. $S \& f^{\prime}$ and $J_{N E W}=(I \backslash S) \cup S^{\prime}$ new system of spheres providing the same expression of K as \# of primes as J.

Note: after this operation (on the symmetric one)

- the number of spheres in J and in J^{\prime} is machauged
- the decompositions given by I and by J^{\prime} are muchauyed
- He number of spheres shared by f and f^{\prime} in increased.
\Rightarrow the prows comus to an and at which all spheres in ρ^{\prime} meet I and all spheres in I meet f^{\prime}; so either $J=J^{\prime}$ on there is some taousvase intersection.

Proof of Chaim. Have $S^{\prime} \subset J^{\prime}$ with $S^{\prime} \cap J=\varnothing$
$\Rightarrow \exists$ comporent C of $S^{3} \backslash J$ that contains S^{\prime}.

Siuce $\widehat{(G, C \cap K)}$ is prime $\Rightarrow S^{\prime}$ must give a trivid splibting of it \Rightarrow eilluen T_{1} a T_{2} o thivial taugle.
Suppose it's T_{1} in fictme.

I notice that not all of $S_{i_{1}}^{(1)}, \ldots, S_{i_{p}}^{(1)}$ cans bloop to I' for othawise sue component of the oghiling give by J^{\prime} would be trivial.

We conclude by showing that any of the components of $\partial G 1$ not in 91 can ar Traded with S^{\prime}.

gives same decoupanition of k ar $\#$ as 1 did .

Claim proved.

Left to zemove thas reme istensedtin.

