Teoria dei Nodi

$$
1 / 4 / 19
$$

Yersien of $\#$ fon diagreaus: $D_{1}, D_{0} \subset \mathbb{R}^{2} \subset S^{12}$ $\gamma \cong S^{\prime}$ spoaring

way be cucurany to eithen add $\mid \rightarrow \infty$ or use ITKIT 四:

Irp: $K_{0} \# K$, welledefiad for oriented.

Proof: choices:- sphere S separating Ko from K, V

- position of $K_{j} \subset B_{j} / i+0 x_{0 p y}$
- square:

Suppose I cure Q, Q^{\prime} squares for Whop can a anu e $Q \cap S=Q^{\prime} \cap S=e$ (all sppurats on S are istpie) and if $Q_{0}=Q \cap B_{0} \quad Q_{0}^{\prime}=Q^{\prime} \cap B_{0}$ then e is induce 1 the sam aratation by Q_{0}, Q_{0}^{\prime}

$$
Q_{7}=Q \cap B_{1}, Q_{1}^{\prime}=Q^{\prime} \cap B_{1}
$$

Claim: using $Q_{0} \cup Q_{1}=Q$ or $Q_{0} \cup Q_{1}^{\prime}$ gives sam using $Q_{0}^{\prime} \cup Q_{1}^{\prime}=Q^{\prime}$ on $Q_{0} \cup Q_{1}^{\prime}$ gives same symmetric statements that singly condersion-

shoiick LHS sutil il's reny suall:

Slide flag aloag Q_{1}, Q_{1}^{\prime} (I coukned Heven to Hein end on K_{1}

becoares this

exacise: show this cannot hoppen becaune Qlienduce good oricutatio oath.

Will show: ヨ well-defued decouroaiton of each kust as a \# of prine knots (kuots that do not decoapore on of two rou-trivid kuats).

Def: $g(K)$ genus

$$
=\min \left\{g(\hat{\Sigma}): \sum \text { Seifectfon } K, \quad \hat{\sum}=\Sigma \cup D^{2}\right\}
$$

Unkuot: wit cinde in $\mathbb{R}^{2} \times$?o?.

Rear: $g(K)=0 \Rightarrow K$ musket.

$$
g(K)=0 \Rightarrow K=\partial D \quad D \cong D^{2} \text { smooth }
$$

$t \ll 1$
almost planar

Trefoil.

$$
\begin{gathered}
x=1-2=-1 \quad x=2(1-9)-1 \\
\Rightarrow g=1
\end{gathered}
$$

$\Rightarrow g\left(t_{u} f\right)=1$.
twist knots:

$k=1$ trefoie
$k=2$
 fipme - 8

Claim: all have genas 1.
oold K :

eren k

Thm: $g\left(K_{0} \# K_{1}\right)=g\left(K_{0}\right)+g\left(K_{1}\right)$.
$\xlongequal{P_{000}} f=$ of \leqq

Fact: wlop $Q \cap\left(\Sigma_{0} \cup \Sigma_{1}\right)$:

\Rightarrow QuE

$$
\begin{aligned}
X(\Sigma) & =X\left(\sum_{0}\right)+X\left(\Sigma_{1}\right)-1 \\
2(1-g)-1 & =2\left(1-g_{0}\right)-1+2\left(1-g_{1}\right)-1-1 \\
\Rightarrow g & =g_{0}+g_{1}
\end{aligned}
$$

