Peoria de nodi
9/4/19

- f: $M \rightarrow \mathbb{R}$ Manse if de ait. pts av uon-dog
- every $f: M \rightarrow \mathbb{R}$ becocues Mars oft sud e penturibosious. $n \geqslant 2$ CAT $\in\{$ TOP, DIFF, PL\}

Jondau-Schouflies problem:

$$
\begin{aligned}
& \text { if } S C S^{m}, S \cong S_{C A i} S^{m-1} \\
& \Rightarrow S^{n}=B_{0} \cup B_{q} \cup S \text { with } \bar{B}_{j} \cong D_{C \pi} D^{n} \\
& \partial B_{i}=S .
\end{aligned}
$$

Auswas: YES $n=2 \quad$ CAT $=$ TOP

$$
\text { NO } n=3 \quad C A T=\text { TOP }
$$

(Alexander's honked sphene)
Thu: YES $n=3 \quad C A T=D I F F$
(YES $n=3 \quad C A T=P L$ similar proof)

Proof: fact $S^{3} \backslash S$ has $\leqslant 2$ components.

Claim: enough to show that $S \cong_{\text {DIFF }} S^{2} \subset \mathbb{R}^{3}$ bounds B with $\bar{B} \cong D^{3}$. Enough because switching $x \in B$ with ∞ get other D^{3}.

Claim: there exists a height fraction $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ s.t. Alg Manse (height: \perp projection on ponametiond live; or simply f mo aitical pt \& $f^{-r}(t) \cong \mathbb{R}^{2}$).

Idea 1: take any 1 projection and slightly putmb it so that restiction to S decomes Moms;

Odea 2: take Gam mop $N: S \rightarrow S^{2}$ aced choose $r \in S^{2}$ s.f. $v \&-v$ are regular values of N; take $l=1$ projection en Span (V).

Have: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ height $h=\left.f\right|_{S}$ Monse wlog can assure that aiticol volues $c_{0}<c_{1}<\ldots<c_{m}$ dl have one peimage. Choone $c_{0}<a_{1}<c_{1}<\ldots<a_{n}<c_{m}$, notia that $h^{-1}\left(a_{j}\right)=$ collection of cincles in

$$
\mathbb{R}^{2} \times\left\langle a_{j}\right\rangle=f^{-1}\left(q_{j}\right) ;
$$

actudly $\quad h^{-1}\left(\left[a_{j}-\varepsilon, a_{j}+\varepsilon\right]\right)=$ collection of glitus

Mastead: $h^{-1}\left(\left[c_{i}-\varepsilon, c_{i}+\varepsilon\right]\right)=$ collection
of cylidens
with 1 local exception:
sigus (eipenvaluer of $H k$)

$$
+f
$$

- -

Perfonm smgeny on S aloup each cirde of $h^{-1}\left(a_{j}\right)$: individually

If the cinder in $h^{-1}\left(a_{j}\right)$ are vested I anange the heists of sumpoie, no that the inner ones take place father from $\mathbb{R}^{2} \times$ vol: 1 :

Result: smooth closed smface s.t. each component cousins of at most the Lellowing

- our vertical tube on a Morse pica containg only one cincture point
- Some cops added doing surgery.

Cline: each component of the sungered sphere bowls B with $\bar{B} \cong$ DIP D^{3} ignoring other cougonerls, Rearrai

1) tube + cops

2) local min/max $+\operatorname{cops}$

+3 cops at diffent heiptts
\rightarrow OK does bound dond 3-disc.

Notice: meve und so fon the faot that $S \cong S^{2}$

Claim: the propunty that each individual coupont of the smface bounds a closed D^{3} savives as I ruido smpessies one at a time.

Remonk:

If $C_{1}=C_{2}$ ther γ mo.separoting ofter midoing thi's supry \Rightarrow recusius rounseparatieg ofter undoing lath superies \Rightarrow mon-separelingon $S \cong S^{2}$: impossible by 2D-Schoiuflies (easy in DIFF catepony).

Now: $\quad C_{1}=\partial B_{1}, \quad C_{2}=\partial B_{2} \quad \overline{B_{j}} \cong D^{3}$ mut show $C=\partial B \quad \bar{B} \cong D^{3}$.

The cases:

c_{2} lv

$$
\begin{aligned}
& \mathbb{R}^{3}=B_{1} \cup B_{2} \\
& \text { conrad }
\end{aligned}
$$

Bridge index:

$$
\begin{aligned}
& L \subset S^{3} \text { link } \\
& \qquad(L)=\min \left\{k: \quad \exists S \underset{\substack{D_{P L F}\\
}}{ } S^{2} \subset S^{3}\right. \text { s.t. } \\
& S=\partial B_{0} \partial B_{1} \text { and }
\end{aligned}
$$

$$
B_{j} L \cap B_{j} \cong \underbrace{\underbrace{n \| 1}_{n}}_{k} \cong \operatorname{An\cap \cap }
$$

Rem: $b(L) \leq$ overancs in a Liapram

How to visudize bidge intex k hinks:

separatily the two compunents of S^{3} is ane trivial bells with tayke of k strouds.

Take turo paudlel coptes of S :

nound conporition of 4 mops given $\left.S^{2} \times l p\right\rangle$ wilop. orint. pesxiup noesping $\{1,2 \ldots$, ,... $2 \in\}$ to thenselves; it is therefore irobpic to il through mops that veed not prosuve $\{1, \ldots 24\}$

Gridge iudex k link is
2k-stauds poing unourbuiadly validely
$\circlearrowright \cdots \backsim{ }^{\top}$
(2k)-braid

Theoneu: $T C S^{3} T \cong$ difs tonus
then $\exists K$ knot s.t. $T=\partial U(K)$.

Proof: $\frac{C_{\text {ain 1 }} 1:}{S T}$ thes exists a sphne S s.t. S历T and some coupocent of $S \cap T$ does not bound a dise on T.

Proof. of Clain 1: take height fuuction of s.t.
$h=f \|_{T}$ is Monse.

Sappose onitical reluse are $z_{1}<\ldots<z_{m}$; take

$$
\begin{aligned}
& z_{1}<w_{1}<i_{2}<\ldots<z_{n}<w_{m} \\
& T_{j}=h^{-1}\left(\left(-\infty, w_{j}\right]\right) .
\end{aligned}
$$

Wotia $T_{1}=$ 1-puatmed sphere

Propuly of T_{j} : being suion of punctued spheres

- trime fon $j=1$
- fels for $j=m \quad$ ($T_{m}=T$ tarns)

Take suallest m s.t. Tim has propurty, $T_{m v i}$ docsn't.
4 typen of trawsition depading on notime of an'tical volue $z \mathrm{~m}$:
 still holds

σ_{1}, γ_{2} in diffeat cogrents \Rightarrow stile holds.
\Rightarrow taansition is of tgpe 4 with $r_{1,} r_{e}$ in same componest

Hence σ_{1} is rou-sop. on T_{m+1}
\Rightarrow remains non-sep in T.
Clain 1 proed. with $S=h^{-1}\left(w_{m}\right)$
Cloin 2: conclusion
Take $\gamma \subset S$ 内T innenmost on S.
If γ bowds a dixc on

$$
\begin{aligned}
D \cup D^{\prime} & \cong S^{\prime 2} \\
\Rightarrow D \cup D^{\prime} & =\partial B_{0} \\
& =\partial B_{1}
\end{aligned}
$$

can isotope T across B_{0} removing γ in the intersection:

\square

Continue motile find γ innermost on S st. $\gamma=\partial \Delta$ $\triangle C S, \gamma$ does not bound dice on J.
Swipes T aloug \triangle :

γ don not bound dine on T
$\Rightarrow \sum$ sphere \Rightarrow bounds disc, one both sides.

Take

then $K=\alpha \cup \beta$ than $T=\partial U(K)$

\qquad

Def: if $K_{0}, K_{1} \subset S^{3}$ are oriented knots I define their connected sum $K_{0} \# K_{1}$:

- Isotope K_{0}, K_{1} sot. $\exists S \cong_{\text {DIFF }} S^{\prime 2}, S=\partial B_{0}=\partial B_{1}$ with $女_{j} \subset B_{j}$
- take $\mathbb{Q} \cong[0,1] \times[0,1]$ oriented sit. $Q \cap K_{j}=\{j\} \times[0,1]$ with onintotion of ∂Q matclay Heat of Ki
and $Q \cap S=\{1 / 2\} \times[0,1]$

$$
\text { - } \begin{aligned}
K_{0} \# K_{1}=K_{0} \cup K_{1} & \vee(\{0,1\} \times[0,1]) \\
\cup(& ([0,1] \times[0,1\}))
\end{aligned}
$$

Prop: $K_{0} \# K_{1}$ is well-defind repardess of de choices ruade

Fon marriented knots, K_{0} \# K_{1} is ome of the (at mait two) nuerieuted knots obtaind as $\vec{K}_{0} \# \vec{K}_{1}$ csing audtivery eiedtober on K_{0}, K_{3}.

At most ywo: $\left(-K_{0}\right) \#\left(-K_{0}\right)=-\left(k_{0} \# K_{1}\right)$
Remark: $t_{0} \cong-K_{0}$ then $k_{0} \# K_{1}$ woll-def for moniented.

