Tporia dei modi $14 / 3 / 2019$
Q : Reidemeister cunver fire ofporithan to clanify knots?
$\exists f: N \times N \rightarrow \mathbb{N}$ s.t.
Yes if: giren D_{1}, D_{2} with c_{1}, c_{2} aonings they ropereat same kuot iff vbated by R-unoren involviag doapeam, with $\leq f(c$, , 2) ocmips.

Pantid results like tho, nuaver bat not in pereerde.

Remark: a mon-increaniug R-unve imolves a refiou (componert of $S^{2} \backslash$ diagromen) with ≤ 3 concers:

Ex:

$$
L \subset S^{3} \text { link } \quad E(L)=S^{3} \backslash \dot{U}(L)
$$

$$
\text { 3-manifold with } \partial E(L)
$$

$$
=U \text { toni. }
$$

$E(L) /$ hoveo is invariait of L.
Thm (Gondon-Luecke): fon kuot K, complete inveriant.

False for links:

two zuknots

Crossing number: $\quad c(L)=\min \left\{n: \quad \begin{array}{l}\exists D \\ \text { with miagraming of of } L\}\end{array}\right.$
Exercise: classify links without split muknot components with $c \leq 4$.
$c=1$

nothing

$c=3$ card: no triangle. Take maximal thee in D

cane 2: triangle

$$
c=4 \quad \ldots
$$

Fact: done by coupsten with lots of invariants used for $c \leq 19$ (maybe wove).

Unkrottive number for L
(1) min $\{n: \exists D$ diagoan of L s.t. switching n nomings of D get diagram of rulink with same...
(2) min $\left\{n: \exists D_{1}, D_{1}^{\prime}, \ldots, D_{m}, D_{m}^{\prime}\right.$ s.t. D_{1} reperents L, $D_{i} \sim D_{i}^{\prime}$ suitch of 1 aosriug, $D_{i}^{\prime} \sim D D_{i+1}$ R-mevers D_{n}^{\prime} expucents suelint\}
(3) $\min \left\{m: \exists\left(L_{t}\right)_{t \in[0,1]}\right.$ s.t. $L_{0}=L, L_{1}=$ malink
L_{t} link except for $t=t_{1}, \ldots, t_{m}$ and
$L_{t_{i}}$ has only ove tronsverse double point $\}$
Obvious: $\quad(1) \geqslant(2) \geqslant(3)$. Fact $(3) \geqslant(1) \Longrightarrow$ all same.

Reasou: exaptionol times for $\left(L_{t}\right)_{t \in[0,1]} \quad 0<t_{1}<\ldots<t_{m}<1$.

Since have iontopg $L_{t_{1}+\varepsilon} \longrightarrow L_{t_{2}-\varepsilon}$ is aenbiant isotopy have orotopy $L_{t_{1}+\varepsilon} \cup a_{1} \rightarrow L_{t_{2}-\varepsilon} \cup \tilde{a}_{1} ;$ add a_{2}
similarly... all the way; in the end have $L_{L}=$ unlink $\quad L_{1} \cup \alpha_{1} \cup \ldots \cup \alpha_{m}$ s.t. modifying L_{1} along each α_{i} as follow,

I get back L.
Now take projection of $L_{1} \cup \alpha, \cup \ldots \cup \alpha$ m and change it as in previous picture. Now switching the in comings indicated by red enow get mulikk.

Examples:

Not casy to exhibit $K_{\text {'s }}$ with $u(k)>1$.

$$
u=2
$$

cnes big things.

Def: diapaam D is altenuating if following ony caypowent any andercroning is folloved by overchoming and conrasely:

Reve: no RII,RII aron-inceanning opplies to D altencating.

Def: a costing of D is nugatory if

can be divicinited.

The (Tate): if D is altercating ard has no minatory crossing then D sredizes the crossing number-

Prop: any D can be tanned into alternating projection by coming switches.

Proof: first tum all crossings into double pts 1 Restore one arsing candoculy $\frac{1}{1}$; proceed one double point af a time using an already rented neigh bow:

Must show that no contradiction arises: otherwise I have a cycle at a double point who ends prescribe opposite things:

Wlog cal assure cycle is sicuple \Rightarrow bounds a top. dinc.

let's cownt hour many mod 2 strands enth the nepion \Rightarrow totel mumber of \rightarrow is even ; notice thot

Grea crosing iuposes the same presuiptions on red oves as if it didn't exist:

$$
-1-\frac{1}{1}=-1 \frac{1}{1}
$$

\Rightarrow can ipuore and \Rightarrow left with even muride of

\Rightarrow no conilaratiction.
Wintinger presentation of $\pi_{1}(E(L))$.

$$
G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

meaus $G=\frac{\text { free group in the lather } x_{1}, \ldots, x_{m}}{\text { sudelest nowed subpeovp containg } r_{1, \ldots,}}$
r_{j} word in the leters $x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}$
Thu: 1) if $D=D_{1} \cup D_{2} \quad$ (split projection) then $\pi_{1}(E(D))=\pi_{1}\left(E\left(D_{1}\right)\right) * \pi_{1}\left(E\left(D_{2}\right)\right)$
2) if D connected and without cincular ovenarcs then $\pi_{1}(E(D))=\left\langle x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{m}\right\rangle$ where $m=\#$ overacs $=\#$ cromiugs
x_{j} oricited overacs (wrt globel anbitrony oriutetion) r_{i} relation asocioted to i-th cossing

$$
\begin{aligned}
& \pi_{i}: x_{j} x_{k}=x_{l} x_{j} \\
& r_{i}=x_{j} x_{k} x_{j}^{-1} x_{l}^{-1}
\end{aligned}
$$

Moreover one relation can be ouitted.

Rem: rube out in shotemert 2:

Prof.

$$
B_{1} \cap B_{2}=S^{12}
$$

$$
\begin{aligned}
& \pi_{1}\left(E\left(D_{1}\right)\right)=\pi_{1}\left(B_{1} \backslash D_{1}\right) \\
& S^{3} \backslash D_{1}=\left(B_{1} \backslash D_{1}\right) \cup_{S^{2}}^{B_{2}} \pi_{\pi=1} \\
& S^{3} \backslash\left(D_{1} \cup D_{2}\right)=\left(B_{1} \backslash D_{1}\right) \cup_{S_{1}^{2}=1}\left(B_{2} \backslash D_{2}\right)
\end{aligned}
$$

$$
{\pi{1}=1}
$$

2) Must show that if there is no circular ovnanc then oreraes = \# coming. Because:

- ave overonc ends at two crossings distinct $\left.-1$| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | \right\rvert\,except

- at each coming two overacs oniginete dondlet $\left.\ldots \frac{11}{11}\right\} \frac{111}{111} \ldots$ except same vituoction.

Let's denote the overancs by a_{1}, \ldots, a_{n}; take $\pi_{1}(E(D))$ with basepoint at ∞; take γ_{j} the loop:

$$
x_{j} x_{k}=x_{l} x_{j}
$$

$$
x_{j} x_{k}=x_{l} x_{j}
$$

Use Van Kauper exposing $S^{3} \backslash D=A \cup B_{1} \cup \ldots \cup B_{m} \cup C$ I assume the overacs are all at the sam height except very close to crossings:

Bi small piece near it th corning
Hemisphere with up a disc on place poundry A minus one are.

$$
C=\overline{S^{3} \backslash\left(A \cup B_{1} \cup \ldots \cup B_{m}\right)}
$$

actudly shochd fatten
them all to ssely VK.

$=$ free proup geverted by x_{1}, \ldots, x_{m}.

$$
\pi_{1}\left(C_{1}\right)=1
$$

must see effect of attadning B_{i} to A (wa slow it comepords to introduaip alation r_{i}).

B_{i}

$$
\begin{gathered}
\pi_{1}\left(B_{i}\right)=\mathbb{Z}=\left\langle Z_{i}\right\rangle \\
\pi_{1}\left(B_{i} \cap A\right) \rightarrow \pi_{1}\left(\nabla_{i}\right) \\
U_{i} \longmapsto z_{i} \\
v_{i} \longmapsto Z_{i}
\end{gathered}
$$

$$
\pi\left(B_{i} \cap A\right)=\mathbb{Z} * \mathbb{Z}
$$

$$
=\left\langle u_{i}, v_{i}\right\rangle
$$

