Teoria dei nodi 26/2/19
still pof plockboad + amivoted blockoadt roico \longrightarrow nww

Naif def: iunge of au embedring of S^{1}

$$
\text { c..S Suk } \mathbb{R}^{3} \text { on } S^{3} \ldots \text { knot }
$$

Epuiveat $\quad K_{0} \sim K_{\tau} \quad$ if $\forall\left(K_{t}\right)_{t \in[0,1]}$
Wild embedtings

Wild isslogy

Suooth viem point
Suoth knot:
kuot

$$
\begin{array}{ll}
\alpha: S^{\prime \prime} \rightarrow \mathbb{R}^{3} \quad C^{1} \alpha^{\prime}(z) \neq 0 \forall z \\
\alpha: S^{\prime \prime} \rightarrow S^{3} & S^{\prime 3}=\overparen{R}^{3}=\mathbb{R}^{\prime} \cup\{\infty\}
\end{array}
$$

$$
\alpha_{0} \sim_{\substack{\text { isobpicic } \\ \text { isolfic }}} \text { if } \alpha: S^{\prime \prime \prime} \times[0,1] \rightarrow \mathbb{R}^{3} \alpha_{t}^{\prime}(z) \neq 0 \text { H }_{2}
$$

Remarks:

- every knot is knot
- every knot is isotopic to knot
- two knots that ane sostogie ane isotopic
\Longrightarrow same theory in \mathbb{R}^{3} or \mathbb{S}^{3}.
Proposition: if $K C S^{3}$ is image of a knot then it is the image of ≤ 2 / isotopy.

Rear: hoppers only 1
Proof: suppose $\alpha_{0}, \alpha_{1}: S^{11}=[0,1] /{ }_{0=1} \rightarrow K$

- up to rotating one $S^{\prime \prime}$ assume $\alpha_{0}(0)=\alpha_{1}(0)$;
- α_{1}^{-1} 。 α_{0} seef-diffeo of S^{1}; car anus $\sim p$ to mirroring (cst isotopy) one S^{11} oricutation-pomviy ie. $[0,1] \rightarrow[0,1]$ increasing with Fixed ends.

$$
\begin{aligned}
& \gamma_{t}(s)=(1-t) s+t \cdot\left(\alpha_{1}^{-1} \circ \alpha_{0}\right)(t) \\
& \alpha_{t}=\alpha_{1} \circ \gamma_{t} \quad \text { isotopy } \quad \alpha_{0} \sim \alpha_{1} .
\end{aligned}
$$

So: paravetuired knot is orientel

Altermative viewpoicts on epuivolenke:
The following are equivdant for $\alpha_{0}, \alpha_{1}: S^{\prime \prime} \rightarrow S^{3}$
(i) $\exists \alpha: S^{n} \times[0,1] \rightarrow S^{3}$ s.t. $\alpha_{0}-\alpha(1,0) \quad \alpha_{1}=\alpha(1,1)$
(ii) $\exists f: S^{s} \times[0,1] \rightarrow S^{3}$ ft self-diffo of S^{3}

$$
f_{0}=i d \quad f_{1} \cdot \alpha_{0}=\alpha_{1}
$$

(iii) $\exists f: S^{3} \rightarrow S^{3}$ orientation pres self-diffeo

$$
\text { s.t. } \quad \alpha_{1}=f \cdot \alpha_{0}
$$

(ii) $\Rightarrow(i) \quad \alpha_{t}=f_{t} \cdot \alpha_{0}$
$(i i) \Rightarrow(i i i) \quad f=f_{1}$
$(i) \Longrightarrow(i i)$ - aubiect cisotopy

$$
\exists x: S^{n} \times[0,1] \rightarrow S^{3}
$$

Siva $[0,1]$ is cpt emougt to show thot given a any $\neq 1$ arphicutly clas as C^{\prime} map is aucticut isotopic:
take $U \cong S^{1} \times D^{2}$ repulan neighbouhhord with $\alpha\left(S^{*}\right)=S^{\prime \prime} \times\{0\}$

In every $z \times D^{2}$ I see:

$(i i i)=\left(\right.$ ii) Enough to show that a self-tffeo of $S^{x^{3}}$ orientation preserving is iastopic to id.

- wog assure foes $0 \& \infty$
- isotope it or bolls of growing radius to $0 \quad d_{0} f \in G L_{+}(n, \mathbb{R})$
- $G L_{+}(\mu, \mathbb{R})$ connected.
- Piececuise limean viewpoint

Kuot in \mathbb{R}^{3} : pofigonal anve

in S^{3} : canve in 1. skeleton of triaceulotion of $S^{3}\left(S^{3}\right.$: stauded 3-splex in \mathbb{R}^{4} allow any smbdivision)

Isotopy: genuated

$$
\begin{aligned}
& \text { TnK=1 edjee } \\
& t \leftrightarrow \text { Kiev(e've'") } \\
& \text { in } \mathbb{R}^{3}
\end{aligned}
$$

in S^{3} : same allowing also triacyulotion of S^{3} to chaype
Fact: these viewpoints are equivdent. Stategy:

- define a standand way to suoothen

- show thot all $A_{\varepsilon}(K)$ are suoothly isotop'c
- show thot $K_{0} \sim_{p l} K_{1}$ tha $J_{\varepsilon}\left(K_{0}\right) \underset{\text { suovilg }}{\sim} g_{\varepsilon}\left(K_{1}\right)$
- given α sweoth and K a very good Pl oppox of α show knot $\alpha \sim$ suooth $A_{g}(K)$
$-\alpha_{0}, \alpha_{1}$ sacoothly madgic $\Longrightarrow K_{0,}, K_{1}$ very gopd gpoox are Pl instopule

2 viewpoints: oriented a not
2 viewpoits: can thcide to define $K \sim f(K)$ even with $f: S^{3} \rightarrow S^{3}$ onient-rev.

Kuot: invertible!

chinal!

Yes: amphichiral
no: chinal (left + rijht vecsion)

Kuots + isotopy are reprosuifed by projectrous (planar diagrams) \& rovoes.

Smooth vieupoint: $\alpha: P^{1} \rightarrow \mathbb{R}^{3}$
v vector in $\mathbb{R}^{3} \pi_{v} \perp$ projection on v^{\perp} up to sucdl putmbotion of u vill have:
$-\left(\pi_{v} 0 \alpha\right)^{\prime}(E) \neq 0$ 将 \Rightarrow immersion of $S^{\prime \prime}$ in $\left.\mathbb{R}^{2}\right)$

- traosverse double pots ouly

$$
\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}
$$

Fact: every knot has a diaguan; every diapram gives a kuot / drotopy.

Fact: given $\left(\alpha_{t}\right)_{t \in[0,1]}$ aa inatopy of knots up to swoll perfantodion of v I have that

- $\left(\pi_{v} \cdot \alpha_{t}\right)$ has at most
- 1 point with 0 denivafive
- I nan-trasverse double pt
- 1 tranvess triple poitent
- previous pherameue hgpen at Rinitely vacy t'o.

Reidemeisten moves

planaa inotopy

Theorem: two diaprams roperent isotopic kusts \leftrightarrow reloted by planan isotopy plus $R_{I}, R_{I}, R_{\text {Il }}$.

Facts: - true dro for links

- oriacted version valid

PL vieuppoint: $\quad K \subset \mathbb{R}^{3}$

- wlog π_{r} sand evay syment of K to seppenart, vutios to diffenent poits nan on esperents and only trawsrese donlle pts

- if have

- can assme T projects to thiayple
- up to sobdiviting assumes $\pi_{v}(\tau)$ contains ≤ 1 vertex an ≤ 1 aromig:

nothing

RII

Thm: every PL planan diapam apuesents a Kuot/indoby. Isotopy \leftrightarrow plawan iestp $+\mathbb{R}_{I_{1}} \mathbb{R}_{\text {II }_{1}} \mathbb{R}_{\text {II }}$.

Prop: Trefoil is invertible
Proof:

Exercise: exponent this isotopy using $R_{I}, R_{I}, R_{\text {IF }}$
Two useful facts:

$R_{H}>$

$$
R_{\text {II }}
$$

2) isotopy of diagram a S^{2} (wothen than \mathbb{R}^{2}) is gareoted by $R_{I_{1}} R_{\text {II, }} R_{\text {III }}$:

$$
\uparrow_{R_{I}}
$$

Plop: the figne-8 knot is amptichical Iroof 1 :

