

Geometria e Algebra Lineare / II parte — Scritto del 26/6/18 — Quesiti

Nome _____ Cognome ____ Matricola _____

- **1.** Dire per quali t è diagonalizzabile la matrice $\begin{pmatrix} t^2 + 2t 4 & 2 t \\ 2(t^2 + t 6) & 6 t \end{pmatrix}$.
- **2.** Data $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ calcolare $p_A(t)$ sapendo che $\operatorname{tr}(A) = -5$, che $\det(A) = 4$ e che $p_A(2) = 30$.
- **3.** Trovare tutti i vettori di \mathbb{C}^2 ortogonali a $\begin{pmatrix} 4-i\\1+i \end{pmatrix}$, con somma delle coordinate reale e unitarî.
- **4.** Dire per quali $\alpha \in \mathbb{R}$ le matrici $\begin{pmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 5 & -2 \\ -5 & 0 & 7 \\ 2 & -7 & 0 \end{pmatrix}$ sono coniugate tra loro.
- 5. Al variare di $t \in \mathbb{R}$ determinare il tipo affine della conica $tx^2 + 4xy + 3y^2 \frac{8}{3}x 2y 1 = 0$.
- **6.** Se $U, V \subset \mathbb{P}^3(\mathbb{R})$ sono sottospazî proiettivi distinti di dimensione 2, cosa può essere $U \cap V$?
- 7. Dire per quali $k \in \mathbb{R}$ è esatta la forma $x^2y\sin(7x^3y^2)(y\,\mathrm{d}x + kx\,\mathrm{d}y)$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Geometria e Algebra Lineare / II parte — Scritto del 26/6/18 — Esercizî

- 1. In uno spazio vettoriale X reale di dimensione finita e dotato di un prodotto scalare, considerare due sottospazî vettoriali Y_1, Y_2 e le proiezioni ortogonali f_1, f_2 su di essi. Porre $f = f_1 + f_2$.
 - (A) (4 punti) Provare che f è sempre autoaggiunta.
- (B) (4 punti) Provare che se Y_1 e Y_2 sono ortogonali tra loro allora f è la proiezione ortogonale su $Y_1 + Y_2$.
- (C) (4 punti) Dire se esistono altri casi nei quali f è una proiezione ortogonale. [Aiuto: eventualmente limitarsi al caso in cui $X = \mathbb{R}^2$ e Y_1, Y_2 sono rette.]
- **2.** Considerare la curva $\alpha: (-\infty, -1) \to \mathbb{R}^3$ data da $\alpha(s) = \begin{pmatrix} 3s^2 2s \\ s + \sin(s) \\ \ln(1-s) s \end{pmatrix}$.
- (A) (2 punti) Provare che α è semplice e regolare.
- (B) (4 punti) Determinare il riferimento di Frénet di α nel punto
 s=0.
- (C) (4 punti) Calcolare curvatura e torsione di α nel punto s=0.
- (D) (2 punti) Calcolare $\int_{\beta} y \, \mathrm{d}x$ dove β è la restrizione di α a $[-\pi,0]$.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si possono consultare i libri di testo del corso, esclusivamente in originale e senza annotazioni. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra Lineare / II parte — Scritto del 26/6/18 — Quesiti

Risposte ai quesiti

 $5. \heartsuit$

1.
$$t \neq -1$$

2.
$$p_A(t) = t^3 + 5t^2 + 3t - 4$$

3.
$$\pm \frac{1}{\sqrt{247}} \begin{pmatrix} -1+5i \\ 14-5i \end{pmatrix}$$

4.
$$\alpha = \pm \sqrt{78}$$

- 5. Due rette incidenti per t=1, iperbole per $t<\frac{4}{3}$ con $t\neq 1$, parabola per $t=\frac{4}{3}$, ellisse per $t>\frac{4}{3}$
- 6. Sempre un sottospazio proiettivo di dimensione 1

7.
$$k = \frac{2}{3}$$

1. \spadesuit 2. \heartsuit 3. \spadesuit 4. \clubsuit 5. \heartsuit 6. \spadesuit 7. \clubsuit 8. \heartsuit 9. \clubsuit 10. \diamondsuit

Geometria e Algebra Lineare / II parte — Scritto del 26/6/18 — Esercizî

Soluzioni degli esercizî

 $5. \heartsuit$

1.

- (A) f_1 e f_2 sono autoaggiunte, e la somma di due applicazioni autoaggiunte lo è
- (B) Se Y_1 e Y_2 sono ortogonali fra loro poniamo $V = (Y_1 + Y_2)^{\perp}$. Poiché $Y_2 + V \subset Y_1^{\perp}$ e $Y_1 + V \subset Y_2^{\perp}$, dati $y_1 \in Y_1, \ y_2 \in Y_2, \ v \in V$ abbiamo

$$f_1(y_1) = y_1$$
, $f_1(y_2) = 0$, $f_1(v) = 0$, $f_2(y_1) = 0$, $f_2(y_2) = y_2$, $f_2(v) = 0$

dunque $(f_1 + f_2)(y_1 + y_2 + v) = y_1 + y_2$, che è quello che dovevamo dimostrare.

(C) No. Se Y_1 e Y_2 sono rette non ortogonali nel piano, a meno di rotazioni possiamo supporre che siano generate da $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} \cos(\vartheta) \\ \sin(\vartheta) \end{pmatrix}$, ma allora $(f_1 + f_2)\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + \cos^2(\vartheta) \\ \cos(\vartheta)\sin(\vartheta) \end{pmatrix}$ ha norma $1 + 3\cos^2(\vartheta) > 1$, assurdo.

In generale, supponiamo ch $f_1, f_2, f_1 + f_2$ siano proiezioni; allora

$$0 = (f_1 + f_2) - f_1 - f_2 = (f_1 + f_2) \circ (f_1 + f_2) - f_1 \circ f_1 - f_2 \circ f_2 = f_1 \circ f_2 + f_2 \circ f_1.$$

Se $y_1 \in Y_1$ abbiamo ora $f_1(f_2(y_1)) = -f_2(f_1(y_1)) = -f_2(y_1)$, ma l'unico vettore che una proiezione ortogonale mandi in meno sé stesso è quello nullo, dunque $f_2(y_1) = 0$. Abbiamo provato che $Y_1 \subset Y_2^{\perp}$, come voluto.

2.

(A) La seconda componente ha derivata non negativa e nulla solo in punti isolati, dunque è strettamente crescente. La terza componente ha derivata nulla solo in s=2, dove le altre non si annullano

(B)
$$t = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\-1 \end{pmatrix}$$
, $n = \frac{1}{\sqrt{258}} \begin{pmatrix} 13\\5\\-8 \end{pmatrix}$, $b = -\frac{1}{\sqrt{86}} \begin{pmatrix} 1\\7\\6 \end{pmatrix}$

- (C) $\kappa = \frac{\sqrt{86}}{12\sqrt{3}}, \ \tau = \frac{19}{172}$
- (D) $2\pi^3 + \pi^2 + 6\pi + 4$

 $1. \spadesuit \quad 2. \ \heartsuit \quad 3. \spadesuit \quad 4. \clubsuit \quad 5. \ \heartsuit \quad 6. \spadesuit \quad 7. \clubsuit \quad 8. \ \heartsuit \quad 9. \clubsuit \quad 10. \ \diamondsuit$