Esercizî di Matematica Scienze Biologiche 15/16 – Corso A

(Carlo Petronio)

Foglio dell'1/12/2015

Esercizio 1 Disegnare l'insieme R descritto e trovare il massimo e il minimo su R della quantità q indicata:

(a)
$$R: \begin{cases} 3x + 2y = 19 \\ 3 \le x \le 11 \end{cases}$$
 $q(x,y) = 4x - 3y$

(b)
$$R: \begin{cases} 2x + 3y = 18 \\ -1 \leqslant y \leqslant 9 \end{cases}$$
 $q(x,y) = x + 2y$

(a)
$$R: \begin{cases} 3x + 2y = 19 \\ 3 \le x \le 11 \end{cases}$$
 $q(x,y) = 4x - 3y$
(b) $R: \begin{cases} 2x + 3y = 18 \\ -1 \le y \le 9 \end{cases}$ $q(x,y) = x + 2y$
(c) $R: \begin{cases} 3x - 2y = 13 \\ y \le 11 - 2x \\ x \ge -y - 14 \end{cases}$ $q(x,y) = -x + 4y$

I prossimi esercizî 2 e 3 sono quelli proposti alla fine della lezione sulla programmazione lineare, di cui riassumo qui i testi.

Esercizio 2 Nel piano cartesiano disegnare la regione R definita dalle disequazioni

$$50 \leqslant x \leqslant 120$$
 $60 \leqslant y \leqslant 100$ $x + y \geqslant 180$.

Trovare i punti di R in cui la quantità -15x + 30y assume valore massimo e valore minimo. (Variante: sostituire la disequazione $x + y \ge 180$ con $x + y \le 180$.)

Esercizio 3 Nel piano cartesiano disegnare la regione R definita dalle disequazioni

$$300 \leqslant x + y \leqslant 600$$
 $x \geqslant 100$ $y \geqslant 3x$.

Trovare i punti di R in cui la quantità $0.18 \cdot x + 0.15 \cdot y$ assume valore minimo. (Varianti: trovare anche i punti in cui assume valore massimo. Poi risolvere gli stessi problemi di minimo e massimo sostituendo la disequazione $y \ge 3x$ con $3y \ge x$.)

* * *

Esercizio 4 Dire se ciascuna di queste affermazioni sia vera o falsa, spiegandola se è vera oppure fornendo un esempio in cui non vale se è falsa:

(a) Se
$$\lim_{x \to +\infty} f(x) = +\infty$$
 e $\lim_{x \to +\infty} g(x) = +\infty$ allora $\lim_{x \to +\infty} (f(x) + g(x)) = +\infty$

(b) Se
$$\lim_{x \to +\infty} f(x) = +\infty$$
 e $\lim_{x \to +\infty} g(x) = -\infty$ allora $\lim_{x \to +\infty} (f(x) + g(x)) = 0$

(c) Se
$$\lim_{x \to -\infty} f(x) = +\infty$$
 e $\lim_{x \to -\infty} g(x) = -\infty$ allora $\lim_{x \to +\infty} (f(x) - g(x)) = 0$

(d) Se
$$\lim_{x \to -\infty} f(x) = +\infty$$
 e $\lim_{x \to +\infty} g(x) = +\infty$ allora $\lim_{x \to 0} (f(x) + g(x)) = +\infty$

(e) Se
$$\lim_{x \to -\infty} f(x) = -\infty$$
 e $\lim_{x \to -\infty} g(x) = +\infty$ allora $\lim_{x \to 0} (f(x) - g(x)) = -\infty$

Esercizio 5 Calcolare i limiti in $\pm \infty$ delle seguenti funzioni polinomiali:

(a)
$$f(x) = 4x^8 - 12x + \sqrt{19}$$

(b)
$$f(x) = -5x^6 + \sqrt{17}x^5 - \pi$$

(c)
$$f(x) = 9x^{17} - 41x^2 + 5$$

(d)
$$f(x) = -\sqrt{3}x^5 + x^4 + 100x^2$$

Esercizio 6 Trovare il polinomio del minimo grado possibile il cui grafico contiene i punti assegnati:

(a)
$$(3,-1)$$
 $(2,5)$

(b)
$$\left(\frac{1}{3}, -7\right)$$
 $(2, -2)$ $(-1, -11)$

(c)
$$(1,4)$$
 $(-3,44)$ $(5,60)$

(d)
$$(3,0)$$
 $(-1,0)$ $(2,-3)$ $(-2,5)$

(e)
$$\left(\frac{1}{2}, 0\right)$$
 $(1, 7)$ $(-1, -9)$ $\left(-\frac{1}{2}, -2\right)$

Esercizio 7 Determinare la molteplicità del numero x_0 dato come radice del polinomio p(x) assegnato:

(a)
$$x_0 = -1$$
 $p(x) = 2x^4 + 5x^3 + 5x^2 + 3x + 1$

(b)
$$x_0 = 2$$
 $p(x) = 3x^5 - 19x^4 + 43x^3 - 42x^2 + 20x - 8$