

Geometria e Algebra Lineare / I parte — Scritto del 13/1/16 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _ _

- 1. Se sono dati 13 generatori di $Z = \{z \in \mathbb{C}^9 : (1+i)z_1 + 7z_4 = iz_7 + (2-i)z_9\},$ quanti bisogna scartarne per ottenere una base di Z?
- **2.** Trovare v_1 sapendo che se $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ e $\mathcal{B} = (v_1, v_2)$ si ha $\begin{bmatrix} \begin{pmatrix} 2 \\ -13 \end{bmatrix} \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} 4 \\ -5 \end{bmatrix}$.
- **3.** Data $f: \{x \in \mathbb{R}^6: \sum_{j=1}^6 x_j = 0\} \to \mathbb{R}^{13}$ tale che $f(e_2 e_6) = f(e_3 e_1) = 7e_{13} 2e_5$, dire quanto può valere la dimensione di $X \subset \mathbb{R}^{13}$ tale che $\mathbb{R}^{13} = X \oplus \text{Im}(f)$.
- **4.** Stabilire quante sono al variare di $t \in \mathbb{R}$ le soluzioni di $\begin{cases} (t+2)x + (t-8)y = t \\ -3tx + (4t+1)y = t-5. \end{cases}$
- **5.** Data $A = \begin{pmatrix} 3 & -2 & 1 \\ 4 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}$ calcolare $(A^{-1})_{2,3}$.
- **6.** Calcolare det $\begin{pmatrix} 2 & 0 & 1 & -1 \\ 0 & 1 & 2 & 3 \\ 1 & -1 & 2 & 0 \\ 3 & -1 & 3 & 1 \end{pmatrix}.$
- 7. Dati $X = \{x \in \mathbb{R}^3 : 3x_1 + 2x_2 5x_3 = 0\}$ e $Y = \text{Span}(3e_1 + e_2 + 2e_3)$, esibire la matrice A della proiezione di \mathbb{R}^3 su X rispetto alla decomposizione $\mathbb{R}^3 = X \oplus Y$, verificando che $A \cdot A = A$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / I parte — Scritto del 13/1/16 — Esercizî

1. Considerare

$$v_1 = \begin{pmatrix} 2 \\ 1 \\ -3 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \\ 5 \end{pmatrix}, v_3 = \begin{pmatrix} 8 \\ 1 \\ -13 \\ 2 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ -1 \\ 4 \\ 2 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 4 \\ -8 \\ 11 \end{pmatrix}, A = \begin{pmatrix} -2 & 1 & 5 \\ 3 & -4 & 2 \\ 7 & -6 & -8 \end{pmatrix}.$$

Porre $V = \operatorname{Span}(v_1, \dots, v_5) \subset \mathbb{R}^4$.

- (A) (3 punti) Estrarre da (v_1, \ldots, v_5) una base \mathcal{B} di V, provando che V ha dimensione 3.
- (B) (2 punti) Calcolare il rango di A.

Definire ora l'applicazione lineare $f: V \to V$ tale che $[f]_{\mathcal{B}}^{\mathcal{B}} = A$.

- (C) (4 punti) Calcolare $f(v_5)$.
- (D) (3 punti) Trovare una base di $\operatorname{Im}(f)$ e provare che, per qualsiasi scelta di $i, j \in \{1, 2, 3, 4\}$ distinti, posto $X_{i,j} = \operatorname{Span}(e_i, e_j)$ si ha $\mathbb{R}^4 = \operatorname{Im}(f) \oplus X_{i,j}$.

2. Al variare di $s,t \in \mathbb{R}$ considerare il \mathbb{R}^4 i sottospazî affini

$$E_s = \begin{pmatrix} 1 - 5s \\ -1 \\ 3s + 7 \\ 2 \end{pmatrix} + \operatorname{Span} \left(\begin{pmatrix} s \\ s + 1 \\ 1 \\ 2s + 5 \end{pmatrix} \right), \quad F_t = \begin{pmatrix} -t \\ 2 \\ t - 1 \\ 1 \end{pmatrix} + \operatorname{Span} \left(\begin{pmatrix} t - 1 \\ 4 - 2t \\ 3 - t \\ 3t - 1 \end{pmatrix}, \begin{pmatrix} -t - 1 \\ t + 4 \\ t - 2 \\ 4 - 5t \end{pmatrix} \right).$$

Trovare:

- (A) (2 punti) Equazioni cartesiane di E_s per s=1.
- (B) (2 punti) L'unico valore di s per cui E_s è parallelo al sottospazio $x_1 + 2x_2 + 4x_3 3x_4 = \sqrt[3]{17}$.
- (C) (2 punti) L'unico valore di t per cui F_t non ha dimensione 2.
- (D) (3 punti) Equazioni cartesiane di F_t per t=-2.
- (E) (3 punti) La posizione reciproca di F_1 (cioè F_t per t=1) ed E_s al variare di s.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si possono consultare i libri di testo del corso, esclusivamente in originale e senza annotazioni. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra Lineare / I parte — Scritto del 13/1/16 — Quesiti

Risposte

 $5. \diamondsuit$

1. 5

2.
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

- ${\bf 3.}~{\rm Tra}~9$ e 12 estremi compresi
- 4. Infinite per t=2, nessuna per $t=\frac{1}{7}$, una altrimenti

5.
$$-\frac{1}{15}$$

6. 14

7.
$$\begin{pmatrix} -8 & -6 & 15 \\ -3 & -1 & 5 \\ -6 & -4 & 11 \end{pmatrix}$$

1. \spadesuit 2. \heartsuit 3. \spadesuit 4. \clubsuit 5. \diamondsuit 6. \spadesuit 7. \clubsuit 8. \heartsuit 9. \clubsuit 10. \diamondsuit

Geometria e Algebra Lineare / I parte — Scritto del 13/1/16 — Esercizî

Soluzioni

1.

(A)
$$(v_1, v_2, v_4)$$

(C)
$$8\begin{pmatrix} -2\\ -3\\ 11\\ 0 \end{pmatrix}$$

(D)
$$\begin{pmatrix} -7 \\ -6 \\ 40 \\ 21 \end{pmatrix}$$
, $\begin{pmatrix} 6 \\ 3 \\ -35 \\ -28 \end{pmatrix}$; cancellando le righe i e j da questa coppia di vettori resta sempre una matrice 2×2 con determinante non nullo

2.

(A)
$$\begin{cases} x_2 - 2x_1 = 7 \\ x_3 - x_1 = 14 \\ x_4 - 7x_1 = 30 \end{cases}$$

(B)
$$s = -3$$

(C)
$$t = 5$$

(D)
$$\begin{cases} 6x_1 + x_2 + 2x_3 = 8 \\ x_2 - 3x_3 - x_4 = 10 \end{cases}$$

(E) Incidenti in un punto per s=-2 e per $s=-\frac{1}{3},$ disgiunti e non paralleli altrimenti