

Geometria e Algebra Lineare / II parte — Scritto dell'8/1/14 — Quesiti

Nome _____ Cognome _____ Matricola _ _ _ _

- **1.** Stabilire per quali $t \in \mathbb{R}$ è diagonalizzabile la matrice $\begin{pmatrix} t^2 + t 1 & t 1 \\ 1 t^2 & 1 \end{pmatrix}$.
- **2.** Trovare tutti i vettori di \mathbb{C}^2 unitarî e ortogonali a $\begin{pmatrix} 2-i\\1+i \end{pmatrix}$.
- **3.** Determinare l'intersezione in $\mathbb{P}^2(\mathbb{R})$ dei luoghi $\{[t+1:-2t:1-t]:\ t\in\mathbb{R}\}$ e $\{[-1-t:t+4:t-2]:\ t\in\mathbb{R}\}.$
- **4.** Per quali $t \in \mathbb{R}$ l'equazione $tx^2 + 2(t+1)xy + (5t-1)y^2 + x + 2y = 0$ definisce una parabola?
- 5. Determinare il tipo affine della quadrica $-3x^2 + 3z^2 + 6xy 6yz + 2y = 0$.
- **6.** Determinare la matrice hessiana nel punto (0,0) della funzione $f(x,y) = \cos(x-3y) x\sin(x+y)$ e i segni dei suoi autovalori.
- 7. Posto $\omega(x,y) = (y^2 + \ln(2-x)) dx + (e^{-3y} + x(2y+1)) dy$ calcolare l'integrale di ω sul bordo di $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

UNIVERSITÀ DI PISA

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / II parte — Scritto dell'8/1/14 — Esercizî

- **1.** Al variare di $a, b \in \mathbb{R}$ considerare la matrice $M = \begin{pmatrix} a & 1 & -2 \\ 2 & 1 & -1 \\ 3 & b & 2 \end{pmatrix}$.
 - (A) (4 punti) Provare $M + {}^{t}M$ ammette sempre una base ortonormale che la diagonalizza; per a = -5 e b = 2 esibire un autovalore di $M + {}^{t}M$ e un relativo autovettore unitario.
- (B) (4 punti) Provare che $M \cdot {}^{t}M$ ammette sempre una base ortonormale che la diagonalizza e che gli autovalori sono non negativi; per a = 11 e b = -3 provare che uno di tali autovalori è nullo.
- (C) (4 punti) Provare che esiste sempre una matrice ortogonale V tale che ${}^{\rm t}V \cdot (M-{}^{\rm t}M) \cdot V$ è una matrice A con due soli coefficienti non nulli; per $a=2+\sqrt{10}$ e $b=\sqrt{10}-1$ esibire A.
- **2.** Considerare la curva $\alpha(s) = \begin{pmatrix} \ln(1+s) \\ s-s^2 \\ \sin(s) \end{pmatrix}$.
 - (A) (1 punto) Trovare il più grande intervallo I su cui α è definita, e provare che α è semplice su I.
 - (B) (2 punti) Nel punto s=0 trovare il riferimento di Frénet di α .
 - (C) (3 punti) Nel punto s=0 trovare curvatura e torsione di $\alpha.$
 - (D) (3 punti) Calcolare $\int_{\beta} e^{x-y} (dx dy)$ dove β è la restrizione di α a [0,1].
 - (E) (3 punti) Calcolare $\int\limits_{\gamma}z\,\mathrm{d}y$ dove γ è la restrizione di α a $[0,\pi]$

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si può usare anche un foglio manoscritto contenente enunciati e formule. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra Lineare / II parte — Scritto dell'8/1/14 — Quesiti

Risposte

5.
$$\diamondsuit$$

1. $t \neq 0$

$$2. \ \frac{e^{i\vartheta}}{\sqrt{7}} \left(\begin{array}{c} 1-i\\ 2+i \end{array} \right)$$

3. Il punto [-2:3:1]

4.
$$t = -\frac{1}{4}$$

5. Paraboloide iperbolico

6.
$$\begin{pmatrix} -3 & 2 \\ 2 & -9 \end{pmatrix}$$
; entrambi negativi

7. π

Geometria e Algebra Lineare / II parte — Scritto dell'8/1/14 — Esercizî

Soluzioni

1.

- (A) $M+{}^{\mathrm{t}}M$ è simmetrica, dunque la prima parte segue dal teorema spettrale; per a=-5 e b=2 si può scegliere $\lambda_1=2$ e $v_1=\frac{1}{\sqrt{35}}\begin{pmatrix}1\\5\\-3\end{pmatrix}$; gli altri autovalori sono $\lambda_{2,3}=-3\pm2\sqrt{15}$ con autovettori unitarî relativi $v_{2,3}=\frac{1}{2\sqrt{195\pm45\sqrt{15}}}\begin{pmatrix}\pm5\sqrt{15}-19\\5\pm\sqrt{15}\\2\end{pmatrix}$
- (B) $M \cdot {}^t M$ è simmetrica, dunque per il teorema spettrale ammette una base ortonormale che la diagonalizza; inoltre se λ è un autovalore e v è un autovettore relativo unitario si ha

$$\lambda = \lambda \cdot ||v||^2 = \langle \lambda v | v \rangle = \langle M \cdot {}^{\mathrm{t}} M \cdot v | v \rangle = \langle {}^{\mathrm{t}} M \cdot v | {}^{\mathrm{t}} M \cdot v \rangle = ||{}^{\mathrm{t}} M \cdot v ||^2 \geqslant 0;$$

per a=11 e b=-3 si ha $\det(M)=0$, dunque $\det(M\cdot {}^tM)=0$, da cui segue che $M\cdot {}^tM$ ha l'autovalore 0; gli altri due sono $77\pm\sqrt{3571}$

(C) $M - {}^{\mathrm{t}} M$ è antisimmetrica, dunque per il teorema spettrale esiste una matrice V ortogonale tale che ${}^{\mathrm{t}} V \cdot (M - {}^{\mathrm{t}} M) \cdot V = \begin{pmatrix} 0 & \mu & 0 \\ -\mu & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ dove $\pm i\mu$ sono gli autovalori di $M - {}^{\mathrm{t}} M$; per $b = \sqrt{10} - 1$ (il valore di a non importa) si ha $\mu = 6$

2.

(A) $I = (-1, +\infty)$; la prima componente è crescente

(B)
$$t = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $n = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\-1\\1 \end{pmatrix}$, $b = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$

- (C) $\kappa = \frac{1}{3}\sqrt{2}, \tau = \frac{5}{6}$
- (D) 1
- (E) $2(1-\pi)$