

Algebra Lineare — Scritto del 13/9/11 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- **1.** Data $f: \mathbb{R}^2 \to \{x \in \mathbb{R}^3 : x_1 2x_2 + 3x_3 = 0\}$ tale che $f(e_1) = -e_1 + e_2 + e_3$ e $f(e_2) = e_1 + 2e_2 + e_3$, calcolare $f^{-1}(2e_1 + e_2)$.
- **2.** Data la base $\mathcal{B} = (3 2t, 2 + t)$ di $\mathbb{R}_{\leq 1}[t]$, calcolare $[1 3t]_{\mathcal{B}}$.
- **3.** Calcolare det $\begin{pmatrix} 1-i & 2+3i \\ 3+i & 1+2i \end{pmatrix}$.
- **4.** Se $f: \mathbb{R}^7 \to \{x \in \mathbb{R}^5 : x_1 = x_3 x_4\}$ è lineare e non surgettiva e $W \cap \text{Ker}(f) = \{0\}$, che dimensione può avere W?
- 5. Risolvere $\begin{cases} x 3y + z = -2 \\ 2x + y z = 6 \\ x + 2y 3z = 7. \end{cases}$
- **6.** Risolvere $(1+i)z + 3\overline{z} = 9 + 4i$ con $z \in \mathbb{C}$.
- 7. Considerare la decomposizione $\mathbb{R}^3 = X \oplus Y$ con $X = \{x \in \mathbb{R}^3 : 2x_1 + 3x_2 + 5x_3 = 0\}$ e $Y = \operatorname{Span}(e_1 + 2e_2 e_3)$ e calcolare l'associata proiezione su X di $4e_1 + e_2 e_3$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Algebra Lineare — Scritto del 13/9/11 — Esercizî

1. Al variare di $t \in \mathbb{R}$ considerare le applicazioni lineari $f: \mathbb{R}^3 \to \mathbb{R}^3$ tali che

$$f\begin{pmatrix} 1\\t\\-1 \end{pmatrix} = \begin{pmatrix} -1\\1\\t-2 \end{pmatrix}, \quad f\begin{pmatrix} t+1\\1\\1 \end{pmatrix} = \begin{pmatrix} 2\\-1\\2 \end{pmatrix}, \quad f\begin{pmatrix} -1\\3\\-3 \end{pmatrix} = \begin{pmatrix} -2t\\3\\-2 \end{pmatrix}.$$

- (A) (6 punti) Stabilire quante tali f esistano al variare di t
- (B) (3 punti) Determinare per quale t una tale f esiste, è unica e non è iniettiva
- (C) (3 punti) Per t = 0 verificare che f esiste ed è unica e calcolare $f(e_1 + 4e_2 3e_3)$.
- 2. In \mathbb{R}^4 considerare i sottospazî affini

$$E: \left\{ \begin{array}{l} 2x_1 - 3x_2 + 4x_3 - 5x_4 = 8\\ 3x_1 + 5x_2 - 2x_3 + 4x_4 = 2 \end{array} \right. \qquad F = \left(\begin{array}{l} 2\\ 3\\ 0\\ -1 \end{array} \right) + \operatorname{Span} \left(\left(\begin{array}{l} -2\\ 1\\ 5\\ 2 \end{array} \right), \left(\begin{array}{l} -1\\ 2\\ 1\\ 1 \end{array} \right) \right).$$

- (A) (4 punti) Trovare equazioni parametriche di E.
- (B) (4 punti) Trovare equazioni cartesiane di F.
- (C) (4 punti) Descrivere la posizione reciproca di E ed F e quella delle loro giaciture, determinando poi E+F.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si può usare anche un foglio manoscritto contenente enunciati e formule. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Algebra Lineare — Scritto del 13/9/11 — Quesiti

Risposte esatte

5. \diamondsuit

1.
$$-e_1 + e_2$$

2.
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

3.
$$-10i$$

5.
$$x = 2, y = 1, z = -1$$

6.
$$z = 2 - i$$

7.
$$2e_1 - 3e_2 + e_3$$