

Geometria — Scritto del 14/1/10 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- 1. Calcolare la proiezione ortogonale in \mathbb{R}^3 di $e_1 + 3e_2 2e_3$ su Span $(2e_1 e_2, 2e_2 5e_3)$.
- **2.** Se $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ e $A \cdot {}^{t}A = I_{n}$ si può concludere che A ha autovalori reali?
- **3.** Trovare una base ortonormale di \mathbb{C}^2 che diagonalizza $\begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$.
- **4.** Quali punti di $\mathbb{P}^2(\mathbb{R})$ sono i punti all'infinito dell'insieme $\{(t, \frac{1}{t}, t \frac{1}{t}) \in \mathbb{R}^3 : t \in \mathbb{R}, t > 0\}$?
- 5. Determinare il tipo affine della quadrica di equazione $z^2 + xy + 2xz 3yz + y + 1 = 0$.
- Geom 6. Determinare l'intersezione in $\mathbb{P}^2(\mathbb{R})$ degli insiemi $\{[t:t^2:t^3]: t \in \mathbb{R}, t \neq 0\}$ e $\{[2s:4:-s^2]: s \in \mathbb{R}\}.$
- \mathbf{G}_{eom} 7. Determinare una funzione f tale che la forma $\frac{y}{x} \, \mathrm{d}x + f(xy) \, \mathrm{d}y$ sia chiusa.
- GAII 8. Posto $g(x) = \begin{pmatrix} x_3 x_2 \\ -2x_3 \\ x_1 x_2 \end{pmatrix}$ e $W = \{x \in \mathbb{R}^3 : 2x_1 3x_2 + 4x_3 = 0\}$ verificare che $g(W) \subset W$ e determinare $[g]_{\mathcal{B}}^{\mathcal{B}}$ dove $\mathcal{B} = (3e_1 + 2e_2, 4e_2 + 3e_3)$.
- GAII 9. Data $A=(v, w, z) \in \mathcal{M}_{3\times 3}(\mathbb{C})$ tale che $\det(A)=1-i$ calcolare $\det(2v+iz, w-3iv, 2iw-z)$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Facoltà di Ingegneria — Corso di Laurea in Ingegneria Civile, dell'Ambiente e del Territorio

Geometria — Scritto del 14/1/10 — Esercizî

- $\textbf{1. Considerare la matrice } A = \left(\begin{array}{cccc} 1 & -1 & 0 & 0 \\ -1 & 2 & 3 & 0 \\ 0 & 3 & 1 & -1 \\ 0 & 0 & -1 & 3 \end{array} \right) \text{e l'associata applicazione } \left\langle \cdot \right| \cdot \right\rangle_A : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}.$
- (A) (4 punti) Determinare il segno degli autovalori di A.
- (B) (4 punti) Stabilire per quali j la $\langle \cdot | \cdot \rangle_A$ definisce un prodotto scalare sul sottospazio di \mathbb{R}^4 di equazione $x_j = 0$.
- (C) (4 punti) Detta B la matrice ottenuta da A eliminando l'ultima riga e l'ultima colonna, esibire una base ortonormale di \mathbb{R}^3 costituita da autovettori di B.
- Geom 2. Considerare la curva $\alpha: \mathbb{R} \to \mathbb{R}^3$ data da $\alpha(t) = (2t \cos t, t + 2\sin t, t^2)$.
 - (A) (3 punti) Stabilire se α sia semplice.
 - (B) (3 punti) Detta β la restrizione di α all'intervallo $[0, \pi]$ calcolare $\int_{\beta} (x \, dy y \, dx)$.
 - (C) (3 punti) Calcolare la curvatura e la torsione di α in t=0.
 - (D) (3 punti) Detta $\tau : \mathbb{R} \to \mathbb{R}$ la funzione crescente tale che $\tau(0) = 0$ e $\gamma(s) = \alpha(\tau(s))$ è in parametro d'arco, calcolare $\tau''(0)$.
- дан 3. Al variare di $k \in \mathbb{C}$ considerare la matrice $A_k = \begin{pmatrix} 1 & -i & 1+ik \\ 0 & 1 & 2i \\ k+i & -i & 0 \end{pmatrix}$.
 - (A) (4 punti) Stabilire per quali k la A_k non è invertibile, verificando che esiste un unico valore non reale k_0 per cui ciò accade.
 - (B) (4 punti) Per $k = k_0$ verificare che la prima e la terza colonna di A_{k_0} costituiscono una base \mathcal{B} dell'immagine W di A_{k_0} e determinare $[g]_{\mathcal{B}}^{\mathcal{B}}$ dove $g(w) = A_{k_0} \cdot w$.
 - (C) (4 punti) Per k=0 calcolare il coefficiente di posto (2,3) in A^{-1} .

Geometria — Scritto del 14/1/10 — Quesiti

Risposte esatte

$$5. \diamondsuit$$

1.
$$\frac{1}{47}(2e_1 + 51e_2 - 130e_3)$$

 ${\bf 2.}\,$ No, ad esempio la matrice 2×2 di una rotazione reale

3.
$$\frac{1}{\sqrt{10-2\sqrt{5}}} \begin{pmatrix} 2i \\ 1-\sqrt{5} \end{pmatrix}$$
, $\frac{1}{\sqrt{10+2\sqrt{5}}} \begin{pmatrix} 2i \\ 1+\sqrt{5} \end{pmatrix}$

5. Iperboloide a due falde

6. Il punto
$$[1:-1:1]$$

7.
$$f(t) = \log |t|$$

8.
$$-\frac{1}{3}\begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}$$

9.
$$4(1+2i)$$