

Algebra Lineare — Scritto del 20/2/09 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- 1. Completare $e_1 e_2 e_3$ a una base di $\{x \in \mathbb{R}^4 : 2x_1 3x_2 + 5x_3 + 4x_4 = 0\}$.
- **2.** Se $f: \mathbb{C}^6 \to \{z \in \mathbb{C}^3 : 3z_1 + iz_2 2z_3 = 0\}$ è lineare e surgettiva, $X + \text{Ker}(f) = \mathbb{C}^6$ e $X \cap \text{Ker}(f) = \{0\}$, che dimensione ha X?
- **3.** Determinare $[f]_{\mathcal{B}}^{\mathcal{B}}$ dove $f: \mathbb{R}^2 \to \mathbb{R}^2$ è lineare, $f(e_1) = 2e_1 3e_2$, $f(e_2) = 3e_1 + 7e_2$ e $\mathcal{B} = (3e_1 e_2, -5e_1 + 2e_2)$.
- **4.** Data $A = \begin{pmatrix} 1 & -3 & 2 \\ -2 & 1 & 1 \\ -2 & 2 & -1 \end{pmatrix}$ calcolare $(A^{-1})_{32}$.
- **5.** Tra le orlate della sottomatrice $\begin{pmatrix} i & 0 & -2 \\ 2-i & 3 & 0 \\ 1 & 1-i & 3+2i \end{pmatrix}$ trovare quella avente determinante di modulo massimo.
- **6.** Risolvere $3z^2 + (3i 5)z + 2(1 i) = 0$ con $z \in \mathbb{C}$.
- AL 7. Determinare una base di \mathbb{R}^2 che diagonalizzi $\begin{pmatrix} -2 & 2 \\ 5 & 1 \end{pmatrix}$.
- GAI 8. Per quali $k \in \mathbb{R}$ la conica di equazione $(9-5k)x^2+2(k-3)xy+y^2+6x-2y=0$ è una parabola?

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Algebra Lineare — Scritto del 20/2/09 — Esercizî

- **1.** Al variare di $k \in \mathbb{R}$ considerare la matrice $A_k = \begin{pmatrix} 2(2-5k) & 2(1-3k) & k+1 \\ 6(3k-1) & 11k-3 & k \\ 0 & 0 & 1+k^2 \end{pmatrix}$.
- (A) (4 punti) Trovare due numeri $k_1 < k_2$ tali che per $k \neq k_{1,2}$ il sistema lineare $A_k \cdot x = b$ abbia un'unica soluzione $x \in \mathbb{R}^3$ per ogni $b \in \mathbb{R}^3$.
- (B) (2 punti) Per $k = k_1$ risolvere il sistema $A_{k_1} \cdot x = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$.
- (C) (2 punti) Per $k=k_2$ risolvere il sistema $A_{k_2}\cdot x=\begin{pmatrix}0\\1\\2\end{pmatrix}$.
- AL (D) (4 punti) Discutere la diagonalizzabilità di A_k al variare di k.
- GAI (E) (4 punti) Per k = 0 determinare gli angoli formati dalle tre possibili coppie di colonne della matrice $A_0 + {}^{t}A_0$.
 - **2.** Considerare in \mathbb{R}^3 il sottospazio affine $E = \left\{ \begin{pmatrix} x \\ y \\ x \end{pmatrix} : 2x 3y + 5z = 4 \right\}$ e, al variare di $k \in \mathbb{R}$, il sottospazio affine $F_k = \begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix} + \operatorname{Span} \left(\begin{pmatrix} 3 \\ 5k + 2 \\ 3k \end{pmatrix}, \begin{pmatrix} 3k + 2 \\ 2k + 3 \\ 1 \end{pmatrix} \right)$.
 - (A) (4 punti) Determinare la dimensione di E e trovarne una presentazione parametrica.
 - (B) (4 punti) Per ogni k determinare la dimensione di F_k ; trovarne una presentazione cartesiana per k=2.
 - (C) (4 punti) Verificare che E ed F_k sono sempre paralleli tra loro e stabilire per quali k coincidono.

Algebra Lineare — Scritto del 20/2/09 — Quesiti

Risposte esatte

5. \heartsuit

- 1. Ad esempio con $3e_1 + 2e_2$, $4e_3 5e_4$
- **2.** 2
- 3. $\begin{pmatrix} -74 & 137 \\ -45 & 83 \end{pmatrix}$
- 4. $\frac{4}{5}$
- $5. \left(\begin{array}{cc} 3 & 0 \\ 1-i & 3+2i \end{array}\right)$
- **6.** $z = \frac{2}{3}, \ z = 1 i$
- 7. $\left(\left(\begin{array}{c} 1 \\ -1 \end{array} \right), \left(\begin{array}{c} 2 \\ 5 \end{array} \right) \right)$
- 8. k = 1