

Geometria e Algebra II — Scritto del 15/2/08 — Quesiti

Nome _____ Cognome _____ Matricola _ _ _ _

1. Quali sono le radici complesse del polinomio $z^3 - 2z^2 - 2iz + 4i$?

2. Se
$$V = \left\{ x \in \mathbb{R}^6 : \begin{cases} x_1 + 3x_2 + 2x_3 - 2x_4 + x_5 = 0 \\ 2x_1 + x_2 - 2x_3 + x_4 - x_5 = 0 \\ -x_1 + 7x_2 + 10x_3 - 8x_4 + 5x_5 = 0 \end{cases} \right\}$$

ed è possibile completare un insieme $A \subset V$ a una base di V, quanti elementi può avere A?

3. Se
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 è data da $f\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 2x_1 - x_2 \\ 3x_1 - 2x_2 \end{array}\right)$ e $\mathcal{B} = (2e_1 + 5e_2, \ e_1 + 3e_2)$, trovare $[f]_{\mathcal{B}}^{\mathcal{B}}$.

4. Per quale base
$$\mathcal{B}$$
 di \mathbb{C}^2 si ha $[z]_{\mathcal{B}} = \begin{pmatrix} 2z_1 - iz_2 \\ iz_1 + z_2 \end{pmatrix}$ per ogni $z \in \mathbb{C}^2$?

5. Quanti sono i vettori unitari con prima coordinata positiva e ortogonali a $\{x \in \mathbb{R}^3 : \pi x_1 - \sqrt{5}x_2 + 8x_3 = 0\}$?

6. Esiste una matrice ortogonale
$$M$$
 tale che $M^{-1}\begin{pmatrix} 0 & -1 & 2\sqrt{2} \\ 1 & 0 & -4 \\ -2\sqrt{2} & 4 & 0 \end{pmatrix} M = \begin{pmatrix} 0 & -4 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$?

7. Qual è il tipo affine della quadrica di equazione $2x^2 + 4y^2 - z^2 + 6xy - 2xz + 4yz - 4y + 2z = 0$?

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Geometria e Algebra II — Scritto del 15/2/08 — Esercizî

- **1.** Al variare di k in \mathbb{R} sia $A_k = \begin{pmatrix} k^2 & 0 & 0 \\ -1 & -3k^3 + 6k + 2 & -6k^3 + 10k + 4 \\ 0 & 2k^3 3k 1 & 4k^3 5k 2 \end{pmatrix}$.
 - (A) (3 punti) Calcolare la somma degli elementi sulla diagonale secondaria dell'inversa di A_1 ;
 - (B) (3 punti) Trovare una base del nucleo di A_0 ;
 - (C) (3 punti) Verificare che gli autovalori di A_k sono tutti potenze di k;
- (D) (3 punti) Dire per quali k la A_k sia diagonalizzabile.
- **2.** Al variare di k in \mathbb{R} sia $A_k = \begin{pmatrix} -k & 1 & k \\ 1 & k-1 & 3-2k \\ k & 3-2k & 7k-4 \end{pmatrix}$ e sia $C_k = \{ [x] \in \mathbb{P}^2 : {}^t x \cdot A_k \cdot x = 0 \}.$
 - (A) (3 punti) Trovare i valori di k per i quali la conica proiettiva è degenere;
 - (B) (3 punti) Determinare al variare di k il tipo affine della conica $\{[x] \in \mathcal{C}_k : x_3 = 1\}$;
 - (C) (3 punti) Trovare i valori di k per i quali la conica $\{[x] \in \mathcal{C}_k : x_1 = 1\}$ è una parabola;
- (D) (3 punti) Determinare al variare di k il tipo affine della conica $\{[x] \in \mathcal{C}_k : x_2 = 1\}$.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si può usare anche un foglio manoscritto contenente enunciati e formule. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra II — Scritto del 15/2/08 — Quesiti

Risposte esatte

5. **\times**

1.
$$2, 1+i, -1-i$$

 $\mathbf{2}$. Tra $0 \in 3$

$$3. \left(\begin{array}{cc} 1 & 0 \\ -3 & -1 \end{array}\right)$$

4.
$$\left(\left(\begin{array}{c} 1 \\ -i \end{array} \right), \left(\begin{array}{c} i \\ 2 \end{array} \right) \right)$$

- 5. Uno solo
- **6.** No
- 7. Iperboloide a una falda