

Matematica III — Scritto del 27/5/06 — Quesiti

Nome _____ Cognome _____ Matricola _ _ _ _ _

- 1. La serie di funzioni $\sum_{n=0}^{\infty} e^{-nx}/(1+n^2)$ è derivabile termine a termine sull'intervallo [0,1]?
- **2.** Se $u, v : \mathbb{R}^2 \to \mathbb{R}$ sono differenziabili e $f : \mathbb{C} \to \mathbb{C}$ data da f(x+iy) = u(x,y) + iv(x,y) è olomorfa, può la matrice jacobiana di $\binom{u}{v}$ avere determinante negativo in qualche punto?
- 3. Calcolare $\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(x^2+4)(x^2-2ix-2)}.$
- **4.** Se $\Omega \subset \mathbb{C}$ è aperto e $f \in \mathcal{H}(\Omega)$, esiste sempre $g \in \mathcal{H}(\Omega)$ tale che dg(z) = f(z) dz per ogni z in Ω ?
- **5.** Calcolare i coefficienti di Fourier reali $a_2(f)$ e $b_2(f)$ dove f(t) = t per $|t| \leq \pi/2$ e f(t) = 0 per $\pi/2 < |t| \leq \pi$.
- **6.** Date $f, g : \mathbb{R} \to \mathbb{C}$ siano $F = \mathcal{F}(f)$ e $G = \mathcal{F}(g)$ le loro trasformate di Fourier. Se F si annulla fuori da [0,3] e G si annulla fuori da [-1,1], dove si può concludere che si annulla $\mathcal{F}(f \cdot g)$?
- 7. Calcolare $\int_{\Sigma} \langle v|n\rangle$ dove $\Sigma = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, z \leq 1\}$, n è un campo vettoriale continuo normale a Σ e unitario, e $v(x,y,z) = (x\sin(z), x^2, \cos(z))$.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Matematica III — Scritto del 27/5/06 — Esercizî

1. Per ogni $k \neq 1$ reale sia x_k la soluzione massimale del seguente problema di Cauchy, definita su un intervallo contenuto in $(0, \infty)$:

$$\begin{cases} x' = \frac{x^2 - tx - 1}{t(x - t)}, \\ x(1) = k. \end{cases}$$

- (A) (3 punti) Si determini $a \in \mathbb{R}$ tale che $t \mapsto ((x_k(t) t)^2 a)/t^2$ sia costante per ogni k.
- (B) (4 punti) Si determini x_k , distinguendo i casi k > 1 e k < 1 e dimostrando in particolare che x_k è sempre definita su (0, 1], mentre è definita su tutto $(0, \infty)$ se e solo se $k \le 0$ oppure $k \ge 2$.
- (C) (2 punti) Si determini $\lim_{t\to 0^+} x_k(t)$ al variare di $k\neq 1$.
- (D) (3 punti) Si determinino i valori di $a,b\in\mathbb{R}$ per cui il seguente problema ammette almeno una soluzione locale:

$$\begin{cases} (tx - t^2)x' + 1 + tx - x^2 = 0, \\ x(a) = b. \end{cases}$$

2. Sia $\omega(x,y,z) = (3x+z)\mathrm{d}x\mathrm{d}y + 2y\mathrm{d}x\mathrm{d}z + (x+3z)\mathrm{d}y\mathrm{d}z$. Per ogni s>0 sia inoltre

$$V_s = \{(x, y, z) \in \mathbb{R}^3 : (x - z)^2 + 2y^2 = 2\cosh^2((x + z)/\sqrt{2}), \ 0 \leqslant x + z \leqslant s\sqrt{2}\}.$$

- (A) (2 punti) Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ definita da $F(x, y, z) = ((x+z)/\sqrt{2}, y, (z-x)/\sqrt{2})$. Si mostri che F conserva le distanze tra punti di \mathbb{R}^3 e si determinino equazioni per $F^{-1}(V_s)$.
- (B) (3 punti) Si mostri che V_s è una superficie con bordo, e se ne determini una parametrizzazione. (Suggerimento: si consideri la composizione di F con una parametrizzazione di $F^{-1}(V_s)$.)
- (C) (3 punti) Si determini l'area di V_s . (Suggerimento: si ricordi che $\cosh^2 a = (1 + \cosh 2a)/2$.)
- (D) (2 punti) Sia $\varphi(x,y,z) = -y(x+z)\mathrm{d}x + a(x,z)\mathrm{d}y + y(x+z)\mathrm{d}z$, dove $a:\mathbb{R}^2\to\mathbb{R}$ è una funzione. Si determini a affinché risulti $\omega=\mathrm{d}\varphi$.
- (E) (2 punti) Si determini $\int_{V_s} \omega$, al variare di s > 0.

Matematica III — Scritto del 27/5/06 — Quesiti

Risposte esatte

5. \diamondsuit

- 1. No, per x=0 la serie delle derivate è divergente.
- 2. No, dalle equazioni di Cauchy-Riemann segue che esso vale $u_x^2 + u_y^2$.
- 3. $-\pi/20$.
- 4. Sì se Ω è semplicemente connesso, ma non in generale.
- **5.** $a_2(f) = 0, b_2(f) = 1/2.$
- **6.** Fuori da [-1, 4].
- 7. $\pm 3\pi \cos(1)$.