

Matematica III — Scritto del 19/06/04 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- 1. Calcolare $\int_R \operatorname{div}(v) \operatorname{dove} R = [0,1] \times [0,\pi] \operatorname{e} v(x,y) = (x \cos^2(y), \sin(y)).$
- **2.** Sia $U \subset \mathbb{R}^3$ un aperto limitato tale che ∂U sia una superficie. Sia $S \subset \mathbb{R}^3$ una superficie con bordo, contenuta in ∂U . Ne segue che S è orientabile?
- 3. Trovare massimo e minimo di x+z sotto i vincoli $x^2+y^2+z^2=2$ e $x^2+y^2=z^2$.
- **4.** Sia $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 2, |z| \le 1\}$. Calcolare $\int_S (z \, dx \, dy + y \, dx \, dz)$.
- **5.** Per quali n possono differire due soluzioni di $a_{n+2} = a_{n+1}^4 + a_n^8$ che coincidono per n = 0 e per n = 2?
- **6.** Siano $f(t) = \sum_{n=1}^{\infty} \frac{1}{n^4} \cos(nt)$ e $F(t) = \int_0^t f(s) ds$. Calcolare la serie di Fourier di F.
- 7. Se $g:[0,\infty)\to\mathbb{C}$ e $\mathcal{L}(g)(z)$ esiste per $\Re(z)>2$, come si calcola g(t) in funzione di $\mathcal{L}(g)$?

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

$$4. \diamondsuit$$

Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni

Matematica III — Scritto del 19/06/04 — Esercizî

1. Si consideri il problema

$$\begin{cases} 3 e^t x^2 x' - 4t^3 + e^t x^3 = 0 \\ x(t_0) = x_0. \end{cases}$$

- (A) (2 punti) Si trovi il dominio $\Omega \subset \mathbb{R}^2$ formato dai punti (t_0, x_0) per cui il problema è equivalente a un problema di Cauchy.
- (B) (2 punti) Si dimostri che esiste $f: \mathbb{R}^2 \to \mathbb{R}$ tale che se x è una soluzione dell'equazione differenziale allora la funzione $\varphi(t) = f(t, x(t))$ è costante.
- (C) (5 punti) Fissati (t_0, x_0) in Ω si trovi la soluzione massimale specificandone il dominio.
- (D) (3 punti) Sia $(t_0, x_0) \in \Omega$ con $x_0 < 0$. Si dimostri che la soluzione massimale del problema ha esattamente un punto di minimo interno.

2.

(A) (3 punti) Sia $\varphi \in \mathcal{H}(\mathbb{C})$ tale che $\varphi(z+1) = \varphi(z)$ e $\varphi(z+i) = \varphi(z)$ per ogni $z \in \mathbb{C}$. Sia $Q = \{z \in \mathbb{C} : -1 < \Re(z) < 1, -1 < \Im(z) < 1\}$. Si verifichi che esiste $z_0 \in Q$ tale che

$$|\varphi(z_0)| = \sup_{z \in Q} |\varphi(z)|.$$

- (B) (3 punti) Sia φ come nel punto (A). Si verifichi che φ è costante.
- (C) (3 punti) Siano $f \in \mathcal{H}(\mathbb{C})$, d un intero, e p(z), q(z) polinomi di grado al più d tali che f(z+1) = f(z) + p(z) e f(z+i) = f(z) + q(z) per ogni $z \in \mathbb{C}$. Si mostri che f è un polinomio di grado al più d+1.
- (D) (3 punti) Sia $\psi \in \mathcal{H}(\mathbb{C})$ tale che $\psi(z + 2\pi i) = \psi(z)$ per ogni $z \in \mathbb{C}$. Si mostri che esiste $g \in \mathcal{H}(\mathbb{C} \setminus \{0\})$ tale che $\psi(z) = g(e^z)$.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si può usare anche un foglio manoscritto contenente enunciati e formule. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Matematica III — Scritto del 19/06/04 — Quesiti

Risposte esatte

5. **\times**

1.
$$\pi/2$$

2. Sì, lo è
$$\partial U$$

4.
$$2\pi$$

5. Al più per
$$n=1$$

6.
$$F(t) = \sum_{n=1}^{\infty} \frac{1}{n^5} \sin(nt)$$

7.
$$g(t) = \frac{1}{2\pi i} \int_{\Re(z)=c} e^{zt} \mathcal{L}(g)(z) dz \text{ per } c > 2$$