

Matematica II (Algebra Lineare) — Scritto del 10/07/04 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- 1. Trovare una base di Span $(e_1 + e_2 2e_3, -e_1 + 2e_2 e_3, 2e_1 e_2 e_3) \subset \mathbb{R}^3$.
- 2. Sia $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ con le ultime due colonne linearmente indipendenti. Sia $b \in \mathbb{R}^3$. L'insieme delle soluzioni del sistema Ax = b può essere vuoto? Un punto? Una retta? Un piano? Tutto \mathbb{R}^3 ?
- **3.** Sia $f: \mathbb{C}_{\leqslant 5}[x] \to \mathbb{C}^2$ tale che $e_2 \not\in \operatorname{Im}(f)$. Dire che valori può assumere $\dim(\operatorname{Ker}(f))$.
- **4.** Dire se la funzione $\mathbb{R}^2 \times \mathbb{R}^2 \ni (x,y) \mapsto {}^{\mathrm{t}}x \left(\begin{smallmatrix} 3 & 4 \\ 4 & 2 \end{smallmatrix} \right) y \in \mathbb{R}$ sia un prodotto scalare.
- **5.** Calcolare l'angolo tra i vettori $(6,3,-\sqrt{3})$ e $(6,3+2\sqrt{3},6-\sqrt{3})$.
- **6.** Sia $A \in \mathcal{M}_{5\times 5}(\mathbb{R})$ avente una sottomatrice 3×3 le cui orlate hanno tutte determinante nullo. Si può concludere che rank $(A) \leq 3$?
- 7. Siano $X,Y\subset\mathbb{C}^4$ con $\dim(X)=2$ e $\dim(Y)=3$. Determinare i possibili valori di $\dim(X\cap Y)$, esibendo un esempio per ciascuno.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Matematica II (Algebra Lineare) — Scritto del 10/07/04 — Esercizî

1. Per ogni $\lambda \in \mathbb{C}$ si consideri la funzione lineare $f_{\lambda} : \mathbb{C}_{\leq 2}[x] \to \mathbb{C}_{\leq 2}[x]$ definita da

$$f_{\lambda}(p(x)) = (1+i+2x) \cdot p(0) + (-i+(1+i)x) \cdot p'(0) + (1+(1+i)x + \lambda x^{2}) \cdot p''(0).$$

- (A) (2 punti) Si determini $p_1(x) \in \mathbb{C}_{\leq 2}[x]$ non nullo tale che $f_{\lambda}(p_1(x)) = 2p_1(x)$ per ogni $\lambda \in \mathbb{C}$.
- (B) (2 punti) Si determini $p_2(x) \in \mathbb{C}_{\leq 2}[x]$ non nullo tale che $f_{\lambda}(p_2(x)) = 2ip_2(x)$ per ogni $\lambda \in \mathbb{C}$.
- (C) (3 punti) Si provi che $\mathcal{B} = (p_1(x), p_2(x), x^2)$ è base di $\mathbb{C}_{\leq 2}[x]$ e si scriva $[f_{\lambda}]_{\mathcal{B}}^{\mathcal{B}}$ per ogni $\lambda \in \mathbb{C}$.
- (D) (2 punti) Si calcolino il determinante e gli autovalori di $[f_{\lambda}]_{\mathcal{B}}^{\mathcal{B}}$.
- (E) (3 punti) Si determinino i valori complessi di λ per cui f_{λ} sia diagonalizzabile.
- **2.** Sia $\mathcal{B} = (v_1, v_2, v_3)$, dove v_1, v_2 e v_3 sono i seguenti vettori di \mathbb{R}^3 :

$$v_1 = {}^{\mathrm{t}}(1,0,-1), \ v_2 = {}^{\mathrm{t}}(2,-1,0), \ v_3 = {}^{\mathrm{t}}(1,1,1),$$

e sia $W = \{x \in \mathbb{R}^3 : x_1 - 2x_2 + 5x_3 = 0\}.$

- (A) (2 punti) Si dimostri che \mathcal{B} è una base di \mathbb{R}^3 .
- (B) (2 punti) Si determinino equazioni parametriche per W.

Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione definita da $g(x) = [x + t(0, 2, 0)]_{\mathcal{B}}$.

- (C) (2 punti) Si determini un vettore $v_0 \in \mathbb{R}^3$ tale che l'applicazione $h : \mathbb{R}^3 \to \mathbb{R}^3$ definita da $h(x) = q(x) v_0$ sia lineare.
- (D) (3 punti) Si dimostri che g(W) è un sottospazio affine di \mathbb{R}^3 e se ne determinino equazioni parametriche.
- (E) (3 punti) Si determinino equazioni cartesiane per g(W).

Matematica II (Algebra Lineare) — Scritto del 10/07/04 — Quesiti

Risposte esatte

 $5. \heartsuit$

- 1. Scartare un vettore qualsiasi
- **2.** Un punto se $\operatorname{rank}(A) = 3$, il vuoto o una retta se $\operatorname{rank}(A) = 2$
- **3.** $0 \le 6 d \le 1 \implies d \in \{5, 6\}$
- 4. No: la matrice ha determinante negativo
- **5.** $\pi/4$
- ${\bf 6.}$ No. Ad esempio I_5 con la sottomatrice delle prime tre righe e ultime tre colonne

7.
$$d = 1$$
: $X = \text{Span}(e_1, e_2), Y = \text{Span}(e_1, e_3, e_4)$
 $d = 2$: $X = \text{Span}(e_1, e_2), Y = \text{Span}(e_1, e_2, e_3)$