

Matematica III — Quiz del 01/02/03

	4.84.		Nome		Cognome	Matricola
G.	г	1	TD 2 1 1 1	(1)	(, • (,))	

1. Sia $\alpha: [-\pi, \pi] \to \mathbb{R}^2$ data da $\alpha(t) = (t, |\sin(t)|)$.

Esiste una riparametrizzazione β di α tale che β' esiste sempre ed è non nullo? \overline{V} / \overline{F}

2. Se $f: \mathbb{R}^3 \to \mathbb{R}$ è derivabile, può l'equazione f(x, y, z) = 0 definire una curva? $\boxed{\mathbf{V}} / \boxed{\mathbf{F}}$

3. È stabile il punto (0,0) di equilibrio per $\begin{cases} x' = -1 + e^{x-y} \\ y' = -1 + (x+1)^3 - 2y \end{cases}$? \boxed{V} / \boxed{F}

4. È vero che $\cosh(-z) = \cos(iz)$ per ogni $z \in \mathbb{C}$? V / F

5. Sia $\Omega = \{z \in \mathbb{C} : z \neq \overline{z}\}$ e $f \in \mathcal{H}(\Omega)$ tale che $f(\frac{1}{n} + i) = 0$ per ogni n.

Ne segue che f è sempre nulla? V / F **6.** Se $\alpha(t) = (1 + t^7, 1 + t^9)$ per $t \in [0, 1]$ e $\omega = \frac{1}{x} dx + \frac{1}{y} dy$, quanto fa $\int_{\alpha} \omega$?

A 16 log 2. B 16. C log 4. D log 2. 7. Se $\Omega = [-\pi, \pi] \times [-1, 1] \times [0, 1]$ e $v(x, y, z) = (\sin(x) e^{y^2 + z^2}, (1 - y^2) \cos(z), zy^2)$, quanto fa $\int_{\Omega} \operatorname{div}(v)$?

A $4\pi/3$. B 2. C $\pi/4$. D 0. 8. Date $u, v : \mathbb{R} \to \mathbb{R}$ con u' = v, v' = 5v - 6u, u(0) = 0, v(0) = 1, posto $\ell_{\pm} = \lim_{t \to \pm \infty} u(t)$ si ha:

A Sì, per ogni k. B No, per nessun k. C Sì se $k \ge 4$. D Sì se $k \le 3$.

10. Sia $S = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+2^n}$. Quale è falsa? A S è assolutamente convergente.

B S converge e s < 5/6. C S converge e S > 2/3. D S = 49/66. 11. Se $u = x \cosh y \sin x - y \sinh y \cos x$, per quale delle seguenti v si ha che u + iv è olomorfa?

12. Siano $f \in \mathcal{H}(\mathbb{C} \setminus \{i\})$ con una singolarità essenziale in i, ed R il raggio di convergenza dello

sviluppo di Taylor di f in 0. Quale è vera? $\boxed{\mathbf{A}} R > 1$. $\boxed{\mathbf{B}} R = 1$. $\boxed{\mathbf{C}} R < 1$. $\boxed{\mathbf{D}} R = +\infty$. **13.** Sia $f \in \mathcal{H}(\overline{\Delta}_2 \setminus \{0\})$ e sia $g(z) = z^2 f(z)$. Se $|f(z)| \leq 1$ per |z| = 2, quale delle seguenti è la

migliore maggiorazione per il residuo r di g in 0?

A $|r| \le \pi/4$.
B $|r| \le 1/8$.
C $|r| \le 16\pi$.
D $|r| \le 8$.

14. Quanto fa $\int_{-\infty}^{+\infty} \frac{x \, dx}{(x-i)(x^2+4)}$?
A $\pi/3$.
B $-\pi/3$.
C $i\pi/3$.
D $-i\pi/3$.

15. Se $f: [-\pi, \pi] \to \mathbb{C}$ e $\alpha_n(f)$ è il suo n-esimo coefficiente di Fourier, quale delle seguenti garantisce

che $\alpha_{-n}(f) = \alpha_n(f)$ per ogni n?

 $A = a_n(f) = a_n(f)$ per ogni h: A = f ha valori reali. A = f è un polnomio. A = f è pari. A = f Nessuna delle precedenti.

Il foglio deve essere intestato immediatamente con nome, cognome e matricola. Deve essere esibito il libretto o un documento. Non è concesso alzarsi prima del termine né chiedere chiarimenti. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e una penna. Prima di consegnare bisogna annotare le risposte date sul foglio fornito. Le domande V/F valgono ± 3 punti, le altre +3/-1 punti. Le risposte omesse valgono 0. Va consegnato questo foglio.

Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni

 25 T T T T T T T T T T T T T T T T T T T
 17/1-18-VS18

Nome _____ Cognome ____ Matricola _ _ _ _

Pro-memoria delle risposte fornite (da non consegnare)

- **1.** V F
- **2.** V F
- **3.** V F
- **4.** V F
- **5.** V F
- **6.** A B C D
- **7.** A B C D
- 8. A B C D
- **9.** A B C D
- **10.** A B C D
- **11.** A B C D
- **12.** A B C D
- **13.** A B C D
- **14.** A B C D
- **15.** A B C D

Matematica III — Quiz del 01/02/03

Risposte esatte

. .

- **1.** F
- **2.** V
- **3.** V
- **4.** V
- **5.** F
- **6.** C
- **7.** A
- 8. B
- **9.** D
- **10.** D
- **11.** D
- **12.** B
- **13.** D
- **14.** A
- **15.** C