

Matematica II (Geometria e Algebra) — Scritto del 15/02/03

Esercizio 1. Al variare di
$$k$$
 in \mathbb{R} sia $A_k = \begin{pmatrix} k-2 & 0 & 1 & k-2 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & k \\ 0 & k-1 & 2 & 1 \end{pmatrix}$ e si indichi ancora con $A_k : \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione data da $A_k(x) = A_k : x$.

 $A_k: \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione data da $A_k(x) = A_k \cdot x$.

- (A) [4 punti] Si dimostri che A_k è sempre invertibile eccetto che per due valori k_0 e k_1 con $k_0 < k_1$ e si determinino k_0 e k_1 .
- (B) [3 punti] Si calcolino il rango di A_{k_0} e di A_{k_1} .
- (C) [3 punti] Si trovino equazioni parametriche per $Ker(A_{k_0})$ e per $Ker(A_{k_1})$.
- (D) [3 punti] Si dimostri che $\operatorname{Ker}(A_{k_1}) \perp \operatorname{Im}(A_{k_1})$ rispetto al prodotto scalare standard di \mathbb{R}^4 .
- (E) [2 punti] Si trovino equazioni cartesiane per $\operatorname{Im}(A_{k_1})$.

Esercizio 2. Al variare di $k \in \mathbb{C}$ sia $f_k : \mathbb{C}^3 \to \mathbb{C}^3$ l'applicazione lineare data da

$$f_k \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} (2-ik)z_1 + kz_2 - kz_3 \\ (i+k)z_1 + (1+ik)z_2 - (1+ik)z_3 \\ iz_1 - z_2 + z_3 \end{pmatrix}.$$

- (A) [3 punti] Si determini un vettore non nullo $v_0 \in \mathbb{C}^3$ tale che $f_k(v_0) = 0$ per ogni k in \mathbb{C} .
- (B) [3 punti] Si determini un vettore non nullo $v_1 \in \mathbb{C}^3$ tale che $f_k(v_1) = 2v_1$ per ogni k in \mathbb{C} .
- (C) [5 punti] Si determini una base \mathcal{B} di \mathbb{C}^3 tale che $[f_k]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 2 & 2k & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ per ogni k in \mathbb{C} .
- (D) [4 punti] Si discuta la diagonalizzabilità di f_k al variare di k in \mathbb{C} .

Esercizio 3. Si consideri l'applicazione lineare $f: \mathbb{R}_{\leqslant 3}[x] \to \mathbb{R}^3$ data da $f(p(x)) = \begin{pmatrix} p(0) \\ p(1) \\ p(2) \end{pmatrix}$ e al variare di t in \mathbb{R} sia $W_t = \{p(x) \in \mathbb{R}_{\leqslant 3}[x]: tp'(0) + p''(0) = 0\}.$

- (A) [3 punti] Si calcoli la dimensione di Ker(f) e se ne trovino equazioni parametriche.
- (B) [4 punti] Si determini l'unico valore t_0 per cui $f(W_{t_0}) \neq \mathbb{R}^3$ e si trovino equazioni parametriche per W_{t_0} .
- (C) [3 punti] Si trovino equazioni cartesiane per $f(W_{t_0})$.
- (D) [2 punti] Si dimostri che per ogni t diverso da t_0 esiste un'unica applicazione lineare $g_t : \mathbb{R}^3 \to W_t$ tale che $f(g_t(v)) = v$ per ogni $v \in \mathbb{R}^3$.
- (E) [3 punti] Per ogni $t \neq t_0$ si calcoli $g_t \begin{pmatrix} t \\ 2 \\ 4-3t \end{pmatrix}$.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti, una penna, ed un foglio manoscritto contenente enunciati e formule. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.