

Matematica II (Geometria e Algebra) — Scritto del 01/02/03

Esercizio 1. Al variare di k in \mathbb{R} sia E_k l'insieme delle soluzioni del sistema di equazioni

$$\begin{cases} kx_1 + kx_2 + kx_4 & = & 0\\ x_1 + kx_3 & = & 1\\ kx_4 & = & -1\\ kx_1 + x_2 + (k^2 - 1)x_3 + x_4 & = & 0 \end{cases}$$

- (A) [3 punti] Si determini l'unico valore reale k_0 per cui E_{k_0} è vuoto.
- (B) [3 punti] Si determini l'unico valore reale k_1 per cui E_{k_1} è un insieme infinito e se ne calcoli la dimensione come sottospazio affine.
- (C) [3 punti] Si trovino equazioni parametriche per E_{k_1} .
- (D) [3 punti] Sia W il sottospazio vettoriale associato ad E_{k_1} e sia W^{\perp} il sottospazio vettoriale ortogonale a W rispetto al prodotto scalare standard di \mathbb{R}^3 . Si dimostri che l'insieme $W^{\perp} \cap E_{k_1}$ consiste di un solo punto P e si calcolino le coordinate di P.
- (E) [3 punti] Si dimostri che P è il punto di E_{k_1} di minima distanza dall'origine.

Esercizio 2. Al variare di k in \mathbb{R} sia $A_k = \begin{pmatrix} 0 & -3 & 1 \\ 2k+2 & -1 & -k-1 \\ -2k & -6 & k+2 \end{pmatrix}$ e sia $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione data da $f_k(x) = A_k \cdot x$. Siano inoltre $\mathcal{E} = (e_1, e_2, e_3)$ la base canonica di \mathbb{R}^3 e

$$\mathcal{B} = (e_1 + 2e_3, -e_2 + e_3, e_1 + e_2 + 2e_3).$$

- (A) [2 punti] Si dimostri che \mathcal{B} è una base di \mathbb{R}^3 .
- (B) [2 punti] Si scriva $[f_k]_{\mathcal{B}}^{\mathcal{E}}$.
- (C) [2 punti] Si scriva $[f_k]_{\mathcal{B}}^{\mathcal{B}}$.
- (D) [4 punti] Si determinino i valori di k per cui f_k sia diagonalizzabile.
- (E) [5 punti] Per $k \neq 2$ si determini una base \mathcal{B}_k di autovettori per f_k .

Esercizio 3. Al variare di s in \mathbb{R} sia $N_s = \begin{pmatrix} 5 & s \\ 3 & 5 \end{pmatrix}$ e sia $f_s : \mathcal{M}_{2\times 2}(\mathbb{R}) \times \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ l'applicazione data da $f_s(A, B) = \operatorname{tr}({}^t A \cdot N_s \cdot B)$.

- (A) [2 punti] Si calcolino $f_s\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)\right) \in f_s\left(\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)\right).$
- (B) [3 punti] Si dimostri che f_s è bilineare e simmetrica se e solo se s=3.

Sia ora $X = \begin{pmatrix} 1/4 & 1/2 \\ 1/4 & -1/2 \end{pmatrix}$ e si consideri l'applicazione $g: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$ data da $g(A) = X \cdot A$. Sia inoltre $\langle .|. \rangle$ il prodotto scalare standard di $\mathcal{M}_{2\times 2}(\mathbb{R})$, ossia $\langle A|B \rangle = \operatorname{tr}({}^t A \cdot B)$.

- (C) [2 punti] Si dimostri che g è lineare ed invertibile.
- (D) [3 punti] Si dimostri che per ogni $A, B \in \mathcal{M}_{2\times 2}(\mathbb{R})$ si ha $f_3(g(A), g(B)) = \langle A|B \rangle$ e se ne deduca che f_3 è un prodotto scalare.
- (E) [5 punti] Si determini una base ortonormale per f_3 .

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti, una penna, ed un foglio manoscritto contenente enunciati e formule. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.