Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni

Matematica II (Geometria e Algebra) — Quiz del 16/2/02

Nome _____ Cognome ____ Matricola _ _ _ _ 1. Se $v_1, \ldots, v_4 \in \mathbb{R}^3$, possono entrambe le terne (v_1, v_2, v_3) e (v_2, v_3, v_4) essere lin. indip.? \boxed{V} / \boxed{F} **2.** Se $f: \mathbb{C}^3 \to \mathcal{M}_{3\times 3}(\mathbb{C})$ è lineare, può $\mathrm{Im}(f)$ avere dimensione 4 ? $\boxed{\mathrm{V}}$ / $\boxed{\mathrm{F}}$ **3.** Se \mathcal{B} è base di \mathbb{R}^3 ma non quella canonica, può esistere $x \in \mathbb{R}^3$ non nullo t.c. $[x]_{\mathcal{B}} = x$? V / F**4.** Se $A \in \mathcal{M}_{3\times 2}(\mathbb{R})$ ha le righe diverse tra loro, ne segue che le colonne sono lin. indip.? V / F5. Se $f: \mathbb{C}^4 \to \mathbb{C}^4$ è diagonalizzabile, può avere solo due autovalori distinti? V / F**6.** Siano $v_1, \ldots, v_5 \in \mathbb{R}^5$. Allora: A Sono sempre linearmente indipendenti. B Generano sempre. C Se sono linearmente indipendenti allora generano. D Nessuna delle precedenti. 7. Se $f: \mathbb{R}^5 \to \mathbb{R}^6$ è lineare e dim(Ker(f)) = 1, che dimensione può avere $W \subset \mathbb{R}^6$ tale che $W \cap \operatorname{Im}(f) = \{0\}$? Almeno 2. B Al più 2. C Almeno 4. D Al più 4. 8. Sia $f : \mathbb{R}^3 \to \mathbb{R}^2$ data da $f(x_1, x_2, x_3) = (-x_2 + x_3, x_1 + x_2)$. Siano $\mathcal{B} = (e_1 + e_2, e_1 + e_3, e_2)$ e $\mathcal{C} = (e_2, e_1 + e_2). \text{ Quale delle seguenti } \hat{e} [f]_{\mathcal{B}}^{\mathcal{C}}?$ $A \begin{pmatrix} 3 & 0 & 2 \\ -1 & 1 & -1 \end{pmatrix}. \quad B \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}. \quad C \begin{pmatrix} -1 & 1 & -1 \\ 2 & 1 & 1 \end{pmatrix}. \quad D \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$ 9. Che rango ha la matrice $\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \\ 2 & -1 & 1 & 3 \end{pmatrix}? \quad A 1. \quad B 2. \quad C 3.$ 10. Quante soluzioni può avere un sistema omogeneo di 4 equazioni in 3 incognite? B Sempre una. C Sempre infinite. D Una, nessuna o infinite. A Una o infinite. **11.** Quali delle seguenti sono equazioni cartesiane per $\left\{ \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + t_1 \begin{pmatrix} \overline{-1} \\ 1 \\ 3 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} : t_1, t_2 \in \mathbb{R} \right\}$? $\boxed{A} \left\{ \begin{array}{ccc}
 & -x + y + 3z & = & -7 \\
 & x + 2y + z & = & -1
\end{array} \right. \qquad \boxed{B} \ 2x + z = 0. \qquad \boxed{C} \ 5x + 4y + 3z = -1. \qquad \boxed{D} \ 5x - 4y + 3z = -1.$ 12. Sia $f: \mathbb{C}^2 \to \mathbb{C}^3$ data da $f(z_1, z_2) = (2iz_1 + z_2, -z_1, iz_2)$. Quale dei seguenti vettori non appartiene a Im(f)? A (2i, -1, 0). B (i, 0, -1). C (0, -i, 1). D (3, i, i). **13.** Sia $\ell = \left\{ \begin{pmatrix} \frac{1}{2} \\ \frac{1}{0} \end{pmatrix} + t \begin{pmatrix} \frac{-1}{2} \\ \frac{1}{2} \end{pmatrix} : t \in \mathbb{R} \right\}$. Quale delle seguenti rette è ortogonale ed incidente ad ℓ ? $\begin{bmatrix}
A & \left\{ \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} : t \in \mathbb{R} \right\}. & B & \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} : t \in \mathbb{R} \right\}.$ $\begin{bmatrix}
C & \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} : t \in \mathbb{R} \right\}. & D & \left\{ \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} : t \in \mathbb{R} \right\}.$ $\begin{bmatrix}
\mathbf{14.} & \text{Quanto fa } \left\langle (1, -i, 1 - i) | (2i, -1 - i, 1) \right\rangle ?$ A 2i. B 0. C (-i-2, 2+2i, -i-3). D 2(1+i). 15. Quale dei seguenti non è un autovalore di $\begin{pmatrix} 9 & 2 & -8 \\ 0 & 2 & 0 \\ 12 & 0 & -11 \end{pmatrix}$? A -3. B 3.

Il foglio deve essere intestato immediatamente con nome, cognome e matricola. Deve essere esibito il libretto o un documento. Non è concesso alzarsi prima del termine né chiedere chiarimenti. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e una penna. Prima di consegnare bisogna annotare le risposte date sul foglio fornito. Le domande V/F valgono ± 3 punti, le altre +3/-1 punti. Le risposte omesse valgono 0. Va consegnato questo foglio.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Matematica II	(Geometria e Algebra)	— Qı	ıiz del	16/2	/02
---------------	-----------------------	------	---------	------	-----

Nome _____ Cognome ____ Matricola _ _ _ _

Pro-memoria delle risposte fornite (da non consegnare)

- **1.** V F
- **2.** V F
- **3.** V F
- **4.** V F
- **5.** V F
- **6.** A B C D
- **7.** A B C D
- 8. A B C D
- **9.** A B C D
- **10.** A B C D
- **11.** A B C D
- **12.** A B C D
- **13.** A B C D
- **14.** A B C D
- **15.** A B C D

Matematica II (Geometria e Algebra) — Quiz del 16/2/02

Risposte esatte

. .

- **1.** V
- **2.** F
- **3.** V
- **4.** F
- **5.** V
- **6.** C
- **7.** B
- 8. A
- **9.** C
- **10.** A
- **11.** D
- **12.** C
- **13.** D
- **14.** D
- **15.** B