

"Matematica III 00/01" + "Matematica 99/00" - Quiz del 08/01/01

	Waternatica iii 00/01 + Waternatica 99/00 - Quiz dei 00/01/01			
VI 1. W. VSC	Nome	Cognome	Matricola	
$(-\rho^x xy + y\rho^x) \delta y\rho$	ro che $(- y n) =$	02 V / F	lle esterna a Ω lungo $\partial \Omega$,	
2. La soluzione del	problema $\begin{cases} x' = x \\ x(0) = x \end{cases}$	$ \begin{aligned} x \cdot e^t - t \cdot e^x \\ &= 0 \end{aligned} $ è di class	se C^4 dove è definita? \boxed{V}_{j}	/ F
			y-Riemann su $\mathbb{R}^2 \setminus \{(0,0)\}$?	
4. Se $f: \mathbb{R} \to \mathbb{R}$ è 2	π -periodica e C^1 e	$\int_{-\pi}^{+\pi} \cos(nt) f(t) \mathrm{d}t = 0 \forall r$	n, ne segue che f è dispari?	? V / F
5. Data $f:[0,+\infty)$	$\to \mathbb{C}$ tale che la t	rasformata di Laplace \mathcal{L}	$\mathcal{C}(f)(z)$ è olomorfa per $\Re(z)$)>1, si puo
concludere che $\lim_{t\to}$				
6. Sia $\alpha(t) = (t, \sin t)$	$(t^2/\pi), t(t-\pi)) p$	er $t \in [0, \pi]$ e sia $\omega = co$	$\operatorname{ds}(y) \cdot (\operatorname{d}x + \operatorname{d}z) - \sin(y) \cdot$	$(x+z)\cdot dy$
		$\boxed{\mathbf{C}} \pi$. $\boxed{\mathbf{D}} -1$.		
			mente in nessun punto con	
$\underline{\text{una}}$ funzione $z = z(x)$	(x,y). Quale è giust	ta? A Σ è una sfer	ra. $B \Sigma e$ un piano ve	erticale.
		D Nessuna tale Σ es		
8. In \mathbb{R}^2 sia α la cu	rva di equazione y	$y^3 = x \cdot \cos(x+y)$. Il vet	ttore $(-2,0)$ è mai normale	e ad α ?
). C Sì, nel punto (ziale $x' = \sin(x)$ sono:	$(\pi,0)$. DSì, nel punto	$(\pi/2,0).$
		R. B Tutte definit D Tutte costanti.	te su tutto \mathbb{R} , ma alcune r	non limitate
$\overline{10.} \text{Sia } f : \mathbb{R}^2 -$	$\rightarrow \mathbb{R}$ infinitamente	derivabile. Il problema	a di Cauchy $\begin{cases} x' = f(t, x) \\ x(0) = 0 \end{cases}$	ammett
soluzione definita su	tutto \mathbb{R} ?	Sì, sempre. B Sì s	se $f(t, x) = 0$ per $ t \ge 1$.	
$lue{C}$ Sì se $f(t,x) = 0$ j	$per x \ge 1.$	D Sì se $f(t,x)$ non dipe	nde da t .	
11. Si consideri l'e	quazione alle diffe	erenze $a_{n+2} = 5a_{n+1} - 6$	δa_n . Quale condizione gara	intisce che i
limite di $\frac{a_n}{2^n}$ sia finito $\frac{a_n}{2^n}$	$\boxed{\mathbf{A}} \ a_1 = 3 \cdot c$	$a_0. \qquad \boxed{\mathbf{B}} \ a_1 = 2 \cdot a_0.$	$\boxed{\mathbf{C}} a_0 = 3 \cdot a_1. \qquad \boxed{\mathbf{D}} a$	$a_0 = 2 \cdot a_1.$
12. Si consideri la s	serie di funzioni ∑	$\lim_{n=0}^{\infty} \frac{(x^2+1)^n}{2^n}$. Quale è gius	sta?	
A Converge uniform	nemente su $(-1,1)$). B Definisce una	funzione continua su $(-1,$, 1).
C Converge puntua	lmente su $[-1,1)$.	$\overline{\mathbf{D}}$ Non converge j immaginaria di $z \cdot \mathbf{e}^z$ —	per $x = \frac{100}{101}$.	,
$\overline{13}. \text{Se } z = x + iy, \alpha$	quanto fa la parte	immaginaria di $z \cdot e^z$ –	1/z?	
A $e^x(x\sin(y) + y\cos(y))$	$ps(y) + y/(x^2 + y^2)$	2). $\boxed{\mathrm{B}} \mathrm{e}^{x}(x\sin(y) +$	$-y\cos(y) - y/x^2 + y^2$.	
C $(x\sin(y) + y\cos(y))$	$(y) + y/(x^2 + y^2).$	$D(x\sin(y) + y\cos(y))$	$s(y) - y/(x^2 + y^2).$	
14. Quanto fa $\int_{-\infty}^{+\infty}$	$\frac{x^2 \mathrm{d}x}{(1+x^2)(4+x^2)}$?	$A 2\pi/3$. $B 2\pi$.	$-y\cos(y)$) $-y/x^2 + y^2$). $\cos(y)$) $-y/(x^2 + y^2)$. $\cot(x^2 + y^2)$. $\cot(x^2 + y^2)$. $\cot(x^2 + y^2)$.	
			derivata f' risulta $\mathcal{F}(f')$	$s) = s^2 e^{-s^2}$
quanto fa $\mathcal{F}(f)(s)$?	A $is \cdot e^{-is^2}$.	$\boxed{\mathrm{B}} -is \cdot \mathrm{e}^{-is^2}. \qquad \boxed{\mathrm{C}} is$	$\cdot e^{-s^2}$. $\boxed{D} -is \cdot e^{-s^2}$.	

Il foglio deve essere intestato immediatamente con nome, cognome e matricola. Deve essere esibito il libretto o un documento. Non è concesso alzarsi prima del termine né chiedere chiarimenti. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e una penna. Prima di consegnare bisogna annotare le risposte date sul foglio fornito. Le domande V/F valgono ± 3 punti, le altre +3/-1 punti. Le risposte omesse valgono 0. Va consegnato questo foglio.

"Matematica III 00/01" + "Matematica 99/00" – Quiz del 08/01/01

Risposte esatte

5. **♣** 11. **♠**

- **1.** V
- **2.** V
- **3.** F
- **4.** V
- **5.** F
- **6.** C
- **7.** C
- 8. B
- **9.** A
- **10.** C
- **11.** B
- **12.** B
- **13.** A
- **14.** D
- **15.** D

Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni

"Matematica III 00/01" + "Matematica 99/00" – Quiz del 08/01/01

Nome _____ Cognome ____ Matricola _ _ _ _

Pro-memoria delle risposte fornite (da non consegnare)

- **1.** V F
- **2.** V F
- **3.** V F
- **4.** V F
- **5.** V F
- **6.** A B C D
- **7.** A B C D
- 8. A B C D
- **9.** A B C D
- **10.** A B C D
- **11.** A B C D
- **12.** A B C D
- **13.** A B C D
- **14.** A B C D
- **15.** A B C D