

"Geom. e Alg. 99/00" + "Matematica II 00/01" - Scritto del 24/09/01

Esercizio 1. Si considerino in \mathbb{R}^3 le due rette definite come segue tramite equazioni cartesiane:

$$r: \left\{ \begin{array}{l} 2x + 3y + z - 3 = 0, \\ x + y = 0, \end{array} \right.$$
 $r': \left\{ \begin{array}{l} x + y + z = 0, \\ y = 3. \end{array} \right.$

- (A) [3 punti] Si determini $r \cap r'$.
- (B) [4 punti] Si trovi una equazione cartesiana del piano $P \subset \mathbb{R}^3$ che contiene $r \in r'$.
- (C) [4 punti] Si esibisca oppure di dimostri che non esiste una base v_1, v_2, v_3 di \mathbb{R}^3 tale che ciascuno dei vettori v_1, v_2, v_3 giaccia in P.
- (D) [4 punti] Sia ℓ una retta giacente su P ed ortogonale a r. Sia Q il piano che contiene r ed è ortogonale a ℓ . Si provi che Q non dipende dalla scelta di ℓ e se ne trovino equazioni parametriche.

Esercizio 2. Sia $f: \mathbb{R}_{\leq 3}[x] \to \mathbb{R}_{\leq 3}[x]$ l'applicazione data da $f(ax^3 + bx^2 + cx + d) = cx^3 + dx^2 + ax + b$.

- (A) [4 punti] Sia $V \subset \mathbb{R}_{\leq 3}[x]$ il sottospazio dato da tutti i polinomi p(x) tali che p(i) = p(-i) = 0, dove i è l'unità immaginaria. Si dimostri che V è un sottospazio vettoriale di $\mathbb{R}_{\leq 3}[x]$.
- (B) [4 punti] Si dimostri che f(p(x)) = p(x) se e solo se $p(x) \in V$.
- (C) [3 punti] Si trovi un'applicazione lineare $g: \mathbb{R}_{\leq 3}[x] \to \mathbb{R}_{\leq 3}[x]$ tale che $g \circ g = f$.
- (D) [4 punti] Si dimostri che esiste un'applicazione lineare $h: \mathbb{R}_{\leq 3}[x] \to \mathbb{R}_{\leq 3}[x]$ tale che $h \circ h$ è l'identità, $\operatorname{Ker}(h-\operatorname{Id})$ ha dimensione 2, e h(V)=V ma $h(p(x))\neq p(x)$ per ogni $p(x)\in V$ non nullo.

Esercizio 3. Sia
$$A_k = \begin{pmatrix} 1 & 1 & 1-k \\ 0 & 4-k & 0 \\ 1-k & 0 & 3 \end{pmatrix}$$
 e sia $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ data da $f_k(v) = A_k \cdot v$.

- (A) [4 punti] Si dica per quali $k \in \mathbb{R}$ l'applicazione f_k sia iniettiva e per quali $k \in \mathbb{R}$ sia suriettiva.
- (B) [3 punti] Si dimostri che per ogni $k \in \mathbb{R}$ l'applicazione f_k ammette un autovettore.
- (C) [4 punti] Si dica per quali $k \in \mathbb{R}$ l'applicazione f_k sia diagonalizzabile.
- (D) [4 punti] Si dimostri che esiste un $k \in \mathbb{C} \setminus \mathbb{R}$ per cui l'applicazione $g_k : \mathbb{C}^3 \to \mathbb{C}^3$ data da $g_k(v) = A_k \cdot v$ non è diagonalizzabile.