

"Geom. e Alg. 99/00" + "Matematica II 00/01" – Scritto del 18/06/01

Esercizio 1. Si consideri la funzione $f: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 4}[x]$ data da $f(p(x)) = p(x) \cdot (x^2 + 1)$.

- (A) [4 punti] Si dica se f sia iniettiva.
- (B) [4 punti] Sia $g: \mathbb{R}_{\leq 4}[x] \to \mathbb{R}$ l'applicazione lineare data da g(p(x)) = p(0). Si trovi $\operatorname{Ker}(g \circ f)$.
- (C) [4 punti] Si esibisca una funzione lineare $h: \mathbb{R}_{\leq 4}[x] \to \mathbb{R}_{\leq 2}[x]$ tale che $h \circ f: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 2}[x]$ sia la funzione identità.
- (D) [3 punti] Si esibisca oppure si dimostri che non esiste una funzione lineare $k: \mathbb{R}_{\leq 4}[x] \to \mathbb{R}_{\leq 2}[x]$ tale che $f \circ k: \mathbb{R}_{\leq 4}[x] \to \mathbb{R}_{\leq 4}[x]$ sia la funzione derivazione seconda.

Esercizio 2. Dato $k \in \mathbb{R}$ sia $A_k = \begin{pmatrix} 1 & k & 0 \\ k & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ e si consideri la forma bilineare simmetrica su \mathbb{R}^3 definita da $\langle x|y\rangle_k = {}^{\mathrm{t}}x\cdot A_k\cdot y$.

- (A) [4 punti] Si dica per quali $k \in \mathbb{R}$ tale forma bilineare sia definita positiva, verificando in particolare che ciò accade per k = 1.
- (B) [4 punti] Nel caso k = 1 si trovi una base ortonormale di \mathbb{R}^3 rispetto a $\langle . | . \rangle_k$.
- (C) [4 punti] Si trovi un vettore $v \in \mathbb{R}^3$ tale che $\langle v|v\rangle_k > 0$ per ogni $k \in [0, \sqrt{2})$ e $\langle v|v\rangle_{\sqrt{2}} = 0$.
- (D) [3 punti] Si dimostri che se $v, w \in \mathbb{R}^3$ sono due vettori fissati, la funzione $g : \mathbb{R} \to \mathbb{R}$ data da $g(k) = \langle v | w \rangle_k$ è un polinomio di grado al più 1.

Esercizio 3. Sia $f_k : \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare data da $f_k(v) = \begin{pmatrix} 1 & 1-k & 3-k \\ 0 & 1 & 1 \\ 1 & -2+k^2 & k \\ 1 & 0 & 2 \end{pmatrix} \cdot v.$

- (A) [4 punti] Si dica per quali $k \in \mathbb{R}$ l'applicazione f_k sia iniettiva.
- (B) [3 punti] Si esibisca un vettore $v_0 \in \mathbb{R}^3$ tale che $\operatorname{Ker}(f_k) \subset \mathbb{R} \cdot v_0$ per ogni $k \in \mathbb{R}$.
- (C) [4 punti] Si dimostri che esistono due vettori $v_1, v_2 \in \mathbb{R}^3$ ortogonali a v_0 , tali che $f_1(v_1)$ e $f_1(v_2)$ sono tra loro ortogonali rispetto al prodotto scalare canonico di \mathbb{R}^4 .
- (D) [4 punti] Si dimostri che Span $(\bigcup_k \text{Im} f_k) = \mathbb{R}^4$.