Analisi Matematica I modulo Soluzioni prova scritta n. 2

Corso di laurea in Matematica, a.a. 2004-2005

7 febbraio 2005

1. Studiare la monotonia e la convergenza della successione definita per ricorrenza

$$\begin{cases} a_1 = \alpha \\ a_{n+1} = \frac{a_n^2 + 3}{4} \end{cases}$$

nei casi in cui il primo termine α assume i valori $\alpha=0$, oppure $\alpha=1$, $\alpha=2,\,\alpha=4$.

Soluzione. Definiamo $f(x) = (x^2 + 3)/4$ cosicché si ha $a_{n+1} = f(a_n)$. Notiamo che l'equazione f(x) = x è una equazione di secondo grado che ha due soluzioni: 1 e 3. Dunque se la successione converge ad un valore $a_n \to a$ passando al limite nell'uguaglianza $a_{n+1} = f(a_n)$ si ottiene f(a) = a e dunque a = 1 oppure a = 3.

In particolare, nel caso $\alpha = 1$, si ottiene che $a_1 = 1$, ed essendo f(1) = 1 si conclude che $a_n = 1$ per ogni n. In questo caso, dunque, la successione é costante e converge ad 1.

Notiamo poi che la funzione f è strettamente crescente se ristretta all'intervallo $[0, +\infty)$. In particolare si ha $f([1,3]) \subset [f(1), f(3)] = [1,3]$. Questo significa che se la successione assume un valore nell'intevallo [1,3], tutti i valori successivi saranno nello stesso intervallo. Inoltre su questo intervallo si ha anche $f(x) \leq x$ che significa che $a_{n+1} \leq a_n$ e cioè la successione è decrescente. Dunque nel caso $\alpha = 2$ otteniamo una successione decrescente a valori in [1,3]. La successione dunque è convergente e il limite non può essere 3 in quanto $a_1 = 2 < 3$ e la successione è decrescente. Dunque se $\alpha = 2$ la successione è decrescente e converge a 1.

Per quanto riguarda il caso $\alpha = 0$ notiamo che essendo f crescente su [0,1] si ha $f([0,1]) \subset [f(0),f(1)] = [3/4,1] \subset [0,1]$. Dunque in questo caso, essendo $\alpha \in [0,1]$ la successione assume sempre valori nell'intervallo [0,1]. Inoltre essendo $f(x) \geq x$ se $x \in [0,1]$ si conclude che la successione a_n è crescente e dovrà quindi necessariamente convergere ad 1 (in quanto anche il limite dovrà appartenere all'intervallo [0,1]).

Nel caso $\alpha=4$ consideriamo l'intervallo $[3,+\infty)$. Su questo intervallo f è crescente dunque $f([3,+\infty))\subset [f(3),+\infty)=[3,+\infty)$. Questo significa che essendo $\alpha\in [3,+\infty)$ l'intera successione assume sempre valori in questo intervallo. Essendo poi $f(x)\geq x$ se $x\geq 3$, concludiamo che la successione a_n è crescente. La successione non può però convergere perché in tal caso il limite sarebbe 1 o 3 e comunque sarebbe minore del primo termine della successione. Dunque in questo caso la successione diverge $a+\infty$.

2. Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = 3x^5 - 10x^3 + 15x + 2.$$

- (a) Mostrare che f è iniettiva e surgettiva.
- (b) Dire in quali punti la funzione inversa f^{-1} è derivabile.
- (c) Calcolare $(f^{-1})'(2)$.

Soluzione. Notiamo che si ha

$$f'(x) = 15x^4 - 30x^2 + 15 = 15(x^2 - 1)^2 = 15(x - 1)^2(x + 1)^2.$$

In particolare $f'(x) \geq 0$ per ogni $x \in \mathbb{R}$ e f'(x) = 0 se e solo se $x = \pm 1$. La funzione f risulta quindi essere crescente. La funzione è inoltre strettamente crescente perché se esistessero due valori $x_1 < x_2$ tali che $f(x_1) = f(x_2)$ si dovrebbe avere $f(x) = f(x_1)$ per ogni $x \in [x_1, x_2]$ (in quanto f è crescente) e dunque si avrebbe f'(x) = 0 per ogni $x \in (x_1, x_2)$ cioè in un numero infinito di punti. Invece f' si annulla in due soli punti. Essendo strettamente crescente f risulta essere anche iniettiva.

Dato $y \in \mathbb{R}$ un numero qualsiasi vogliamo ora mostrare che esiste $x \in \mathbb{R}$ tale che f(x) = y. Essendo

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty$$

dalla definizione di limite possiamo asserire che esistono due valori a e b tali che f(x) > y per ogni x > b e f(x) < y per ogni x < a. Essendo f continua sull'intervallo [a, b], per il teorema di esistenza dei valori intermedi possiamo dunque concludere che esiste $x \in [a, b]$ tale che f(x) = y. Dunque f è surgettiva.

Veniamo ora alla derivabilità della inversa. La formula della derivata della funzione inversa ci dice che se f è derivabile nel punto x e se $f'(x) \neq 0$ allora f^{-1} è derivabile nel punto f(x) e si ha

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}.$$

Dunque sappiamo che f^{-1} è derivabile in f(x) per ogni $x \neq \pm 1$. Essendo f(1) = 10 e f(-1) = -6 concludiamo che f^{-1} è derivabile in tutti i punti tranne 10 e

-6. Inoltre nei punti 10e-6la funzione f^{-1} non può essere derivabile, perché se lo fosse si avrebbe

$$0 = f'(\pm 1) = \frac{1}{(f^{-1})'(f(\pm 1))} \neq 0$$

che è impossibile.

Per quanto riguarda l'ultima domanda si ha:

$$(f^{-1})'(2) = (f^{-1})'(f(0)) = \frac{1}{f'(0)} = \frac{1}{15}.$$