Cognome		Nome			
Matricola	Corso di studio)	Anno iscri	izione	

1. (punti 4) Sia dato il sistema S

$$\begin{pmatrix} 1 & 5 & -3 \\ -1 & -5 & 3k \\ 2 & -2 & k \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}.$$

Dire quale delle seguenti affermazioni è vera, e giustificarla.

- (a) Esiste $k \in \mathbf{R}$ per il quale il sistema S non ha soluzioni.
- (b) Per ogni $k \in \mathbf{R}$ il sistema S è risolubile con infinite soluzioni.
- (c) Esiste $k \in \mathbf{R}$ per il quale il sistema S ha ∞ soluzioni e z può essere scelto come parametro.
- (d) Per ogni $k \in \mathbf{R}$ le soluzioni del sistema sono proporzionali.

L'affermazione esatta è _____

Dimostrazione:

- 2. (punti 4) Sia A una matrice 3×3 con carA = 1 e tale che $\lambda = 1$ è un suo autovalore. Dire quale delle seguenti affermazioni è vera e dimostrarla.
 - (a) La matrice A è sempre diagonalizzabile.
 - (b) $\dim \operatorname{Ker} A = 1$.
 - (c) tr A = 2.
 - (d) $\operatorname{car} A^2 = 0$.

L'affermazione esatta è <u>Dimostrazione:</u> 3. (punti 7) Sia data l'applicazione lineare $L_A: \mathbf{R}^3 \to \mathbf{R}^3$ con matrice associata $A = \left(\begin{array}{ccc} 1 & t & 1 \\ 0 & 1 - t & 0 \\ -1 & 1 & -1 \end{array} \right).$ (a) I valori di t per i quali l'applicazione lineare L_A è un isomorfismo sono:

- (b) L'equazione caratteristica di A è:
- (c) Gli autovalori di A sono:
- (d) La matrice è triangolabile per i seguenti valori di t:
- (e) La matrice è diagonalizzabile per i seguenti valori di t:
- 4. (punti 2) Si considerino i seguenti sottoinsiemi di $\mathcal{M}_{2,2}(\mathbf{R})$:

$$V_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbf{R} \right\}$$

$$V_{2} = \left\{ \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} : c, d \in \mathbf{R} \right\}$$

$$V_{3} = \left\{ \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix} : l, m \in \mathbf{R} \right\}.$$

Dire quale delle seguenti affermazioni è vera e dimostrarla.

(a) $V_1 \oplus V_2 \oplus V_3 = \mathcal{M}_{2,2}(\mathbf{R}).$

(b)	\dim	V_1	=	\dim	V_2	+	\dim	V_3
-----	--------	-------	---	--------	-------	---	--------	-------

(c)
$$V_1 + V_2 + V_3 = V_1 + V_2$$
.

(d)
$$V_3$$
 non è un sottospazio.

L'anermazione corretta e		
Dimostrazione:		

5. (punti 7) Determinare i numeri complessi z tali che

$$\begin{cases} \exp(4z + \pi i) - 2ei \exp(2z + \frac{\pi}{2}i) - e^2 = 0 \\ |z| < 1. \end{cases}$$

Le soluzioni sono:

6. (punti 2) Le radici dell'equazione complessa

$$z^4 = 16$$

- (a) Sono tutte reali.
- (b) Sono tutte non reali.
- (c) Sono o reali o immaginarie pure
- (d) sono due complesse coniugate ed una doppia reale

La risposta giusta è

7. (punti 2) Siano date le rette $r \in s$ di equazioni

$$r: \left\{ \begin{array}{l} x=t \\ y=-2 \\ z=1+t \end{array} \right. \qquad s: \left\{ \begin{array}{l} x=-t \\ y=2 \\ z=1-2t \end{array} \right.$$

(a) Le rette si incontrano.
(b) Esiste un piano che contiene le due rette.
(c) Esiste una ed una sola retta incidente entrambe.
(d) La distanza tra r ed $s \ earrow$ 4.
La risposta esatta è Dimostrazione:
(punti 6)
(a) Scrivere l'equazione del piano tangente in $P\equiv (1,1,1)$ alla sfera S di centre $O\equiv (0,0,0)$ passante per P
(b) Scrivere l'equazione della sfera tangente in P alla sfera S ed intersecante il piano di equazione
x - y + z - 18 = 0
in una circonferenza di raggio $r = 3\sqrt{3}$

8.

$\mathbf{Cognome}$]	\mathbf{Nome}			
Matricola	Corso di studio)	Anno iscri	zione	

- 1. (punti 4) Sia A una matrice 3×3 con dim ker A = 2 e con un autovalore non nullo. Dire quale delle seguenti affermazioni è vera e dimostrarla.
 - (a) $\dim \operatorname{Im} A = 2$.
 - (b) La matrice A non è triangolabile.
 - (c) La matrice A è diagonalizzabile.
 - (d) $A^2 = 0$.

L'affermazione esatta è Dimostrazione:

2. (punti 4) Sia dato il sistema S

$$\begin{pmatrix} 2 & 1 & -2 \\ 2 & 2 & k - 2 \\ 2 & 2 & 2k - 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}.$$

Dire quale delle seguenti affermazioni è vera, e giustificarla.

- (a) Per ogni $k \in \mathbf{R}$ il sistema S è risolubile con infinite soluzioni.
- (b) Esiste $k \in \mathbf{R}$ per il quale il sistema S non ha soluzioni.
- (c) Per ogni $k \in \mathbf{R}$ le soluzioni del sistema sono proporzionali.
- (d) Esiste $k \in \mathbf{R}$ per il quale il sistema S ha ∞ soluzioni e z può essere scelto come parametro.

L'affermazione esatta è

Dimostrazione:

3. (punti 2) Si considerino i seguenti sottoinsiemi di $\mathcal{M}_{2,2}(\mathbf{R})$:

$$V_{1} = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbf{R} \right\}$$

$$V_{2} = \left\{ \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} : c, d \in \mathbf{R} \right\}$$

$$V_{3} = \left\{ \begin{pmatrix} 0 & l \\ m & 0 \end{pmatrix} : l, m \in \mathbf{R} \right\}.$$

Dire quale delle seguenti affermazioni è vera e dimostrarla.

- (a) $\dim V_1 = \dim V_2 + \dim V_3$.
- (b) $V_1 \oplus V_2 \oplus V_3 = \mathcal{M}_{2,2}(\mathbf{R}).$
- (c) V_3 non è un sottos pazio.
- (d) $V_1 + V_2 + V_3 = V_1 + V_2$.

L'affermazione corretta è Dimostrazione:

(punti 7) Sia data l'applicazione lineare $L_A: \mathbf{R}^3 \to \mathbf{R}^3$ con matrice associata
$\begin{pmatrix} 1 & t+1 & 1 \end{pmatrix}$
$A = \left(\begin{array}{ccc} 1 & t+1 & 1 \\ 0 & -t & 0 \\ -1 & 1 & -1 \end{array}\right).$
$\begin{pmatrix} -1 & 1 & -1 \end{pmatrix}$
(a) I valori di t per i quali l'applicazione lineare L_A è un isomorfismo sono:
(b) L'equazione caratteristica di A è:
(c) Gli autovalori di A sono:
(d) La matrice è triangolabile per i seguenti valori di t :
(e) La matrice è diagonalizzabile per i seguenti valori di t :
(punti 7) Determinare i numeri complessi z tali che
$\begin{cases} \exp(-4iz + \pi i) - 2ei \exp(-2iz + \frac{\pi}{2}i) - e^2 = 0 \\ z < 1. \end{cases}$
Le soluzioni sono:
(punti 2) Le radici dell'equazione complessa
$z^4 = 81$
(a) Sono tutte non reali.

4.

5.

6.

(b) Sono tutte reali.

(c) sono due complesse coniugate ed una doppia reale

(d) Sono o reali o immaginarie pure	(d)	Sono	О	reali	О	imma	agin	arie	pure
-------------------------------------	-----	------	---	-------	---	------	------	------	------

La risposta giusta è

7. (punti 2) Siano date le rette r e s di equazioni

$$r: \left\{ \begin{array}{l} x = -t \\ y = 1 \\ z = t \end{array} \right. \quad s: \left\{ \begin{array}{l} x = 1 - 3t \\ y = -2 \\ z = -t \end{array} \right.$$

- (a) Esiste un piano che contiene le due rette.
- (b) Le rette si incontrano.
- (c) La distanza tra r ed s è 3.
- (d) Esiste una ed una sola retta incidente entrambe.

La risposta esatta è

Dimostrazione:

8. (punti 6)

- (a) Scrivere l'equazione del piano tangente in $P \equiv (-1,-1,-1)$ alla sfera S di centro $O \equiv (0,0,0)$ passante per P
- (b) Scrivere l'equazione della sfera tangente in P alla sfera S ed intersecante il piano di equazione

$$x - y + z + 18 = 0$$

in una circonferenza di raggio $r=3\sqrt{3}$

Cognome		Nome	
Matricola	Corso di studio		Anno iscrizione

1. (punti 7) Sia data l'applicazione lineare $L_A: \mathbf{R}^3 \to \mathbf{R}^3$ con matrice associata

$$A = \left(\begin{array}{ccc} 1 & -t & 1 \\ 0 & t+1 & 0 \\ -1 & 1 & -1 \end{array} \right).$$

- (a) I valori di t per i quali l'applicazione lineare L_A è un isomorfismo sono:
- (b) L'equazione caratteristica di A è:
- (c) Gli autovalori di A sono:
- (d) La matrice è triangolabile per i seguenti valori di t:
- (e) La matrice è diagonalizzabile per i seguenti valori di t:
- 2. (punti 2) Si considerino i seguenti sottoinsiemi di $\mathcal{M}_{2,2}(\mathbf{R})$:

$$V_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbf{R} \right\}$$

$$V_{2} = \left\{ \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} : c, d \in \mathbf{R} \right\}$$

$$V_{3} = \left\{ \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix} : l, m \in \mathbf{R} \right\}.$$

Dire quale delle seguenti affermazioni è vera e dimostrarla.

- (a) $V_1 + V_2 + V_3 = V_1 + V_2$.
- (b) V_3 non è un sottospazio.
- (c) $V_1 \oplus V_2 \oplus V_3 = \mathcal{M}_{2,2}(\mathbf{R}).$
- (d) $\dim V_1 = \dim V_2 + \dim V_3$.

	fermazione corretta è	
Dim	ostrazione:	
3. (pu	nti 4) Sia dato il sistema S	
	$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 4 & k-1 \\ 1 & 4 & 1+2k \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$	
Dire	e quale delle seguenti affermazioni è vera, e giustificarla.	
	Esiste $k \in \mathbf{R}$ per il quale il sistema S ha ∞ soluzioni e z può essere scelto	eom/
(a)	parametro.	COIIIC
(b)	Per ogni $k \in \mathbf{R}$ le soluzioni del sistema sono proporzionali.	
(c)		
(d)	Per ogni $k \in \mathbf{R}$ il sistema S è risolubile con infinite soluzioni.	
L'af	fermazione esatta è ostrazione:	

4. (punti 4) Sia A una matrice 3×3 con $car A = 1$ e tale che $\lambda = 1$ è un suo autovalore. Dire quale delle seguenti affermazioni è vera e dimostrarla.
(a) $tr A = 2$.
(b) $car A^2 = 0$.
(c) La matrice A è sempre diagonalizzabile.
(d) $\dim \operatorname{Ker} A = 1$.
L'affermazione esatta è Dimostrazione:
5. (punti 7) Determinare i numeri complessi z tali che
$\begin{cases} \exp(-4z - \pi i) + 2ei \exp(-2z - \frac{\pi}{2}i) - e^2 = 0 \\ z < 1. \end{cases}$
Le soluzioni sono:
6. (punti 2) Le radici dell'equazione complessa
$z^4 = 16i$
(a) Sono o reali o immaginarie pure
(b) sono due complesse coniugate ed una doppia reale
(c) Sono tutte reali.
(d) Sono tutte non reali.
La risposta giusta è

7. (punti 2) Siano date le rette r e s di equazioni

$$r: \left\{ \begin{array}{l} x=5\\ y=-t\\ z=1+2t \end{array} \right. \qquad s: \left\{ \begin{array}{l} x=-1\\ y=-2t\\ z=1+3t \end{array} \right.$$

- (a) Esiste una ed una sola retta incidente entrambe.
- (b) La distanza tra r ed $s \ge 6$.
- (c) Le rette si incontrano.
- (d) Esiste un piano che contiene le due rette.

La risposta esatta è	
Dimostrazione:	

- 8. **(punti 6)**
 - (a) Scrivere l'equazione del piano tangente in $P\equiv (1,1,1)$ alla sfera S di centro $O\equiv (0,0,0)$ passante per P
 - (b) Scrivere l'equazione della sfera tangente in ${\cal P}$ alla sfera ${\cal S}$ ed intersecante il piano di equazione

$$x - y + z + 15 = 0$$

in una circonferenza di raggio $r=4\sqrt{3}$

$\mathbf{Cognome}$		Nome			
Matricola	Corso di studio)	$ig _{ ext{Anno iscri}}$	izione	

1. (punti 2) Si considerino i seguenti sottoinsiemi di $\mathcal{M}_{2,2}(\mathbf{R})$:

$$V_{1} = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbf{R} \right\}$$

$$V_{2} = \left\{ \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} : c, d \in \mathbf{R} \right\}$$

$$V_{3} = \left\{ \begin{pmatrix} 0 & l \\ m & 0 \end{pmatrix} : l, m \in \mathbf{R} \right\}.$$

Dire quale delle seguenti affermazioni è vera e dimostrarla.

- (a) V_3 non è un sottospazio.
- (b) $V_1 + V_2 + V_3 = V_1 + V_2$.
- (c) $\dim V_1 = \dim V_2 + \dim V_3.$
- (d) $V_1 \oplus V_2 \oplus V_3 = \mathcal{M}_{2,2}(\mathbf{R}).$

L'affermazione corretta è					
Dimostrazione:					

2. (punti 7) Sia data l'applicazione lineare $L_A: \mathbf{R}^3 \to \mathbf{R}^3$ con matrice associata

$$A = \left(\begin{array}{ccc} 1 & 1 - t & 1 \\ 0 & t & 0 \\ -1 & 1 & -1 \end{array} \right).$$

(a)	I valori di t per i quali l'applicazione lineare L_A è un isomorfismo sono:
(b)	L'equazione caratteristica di A è:
(d)	Gli autovalori di A sono: La matrice è triangolabile per i seguenti valori di t : La matrice è diagonalizzabile per i seguenti valori di t :
•-	nti 4) Sia A una matrice 3×3 con dim ker $A = 2$ e con un autovalore non nullo quale delle seguenti affermazioni è vera e dimostrarla.
(b)	La matrice A è diagonalizzabile. $A^2 = 0.$ $\dim \operatorname{Im} A = 2.$
(d)	La matrice A non è triangolabile.
	fermazione esatta è ostrazione:
4. (pu	$\mathbf{nti} \ 4$) Sia dato il sistema S

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & k+3 & 0 \\ 1 & k+3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

Dire quale delle seguenti affermazioni è vera, e giustificarla.

(a) Per ogni $k \in \mathbf{R}$ le soluzioni del sistema sono proporzionali.

(b)	Esiste $k \in \mathbf{R}$ per il quale il sistema S ha ∞ soluzioni e y può essere scelto come
	parametro.
(c)	Per ogni $k \in \mathbf{R}$ il sistema S è risolubile con infinite soluzioni.
(d)	Esiste $k \in \mathbf{R}$ per il quale il sistema S non ha soluzioni.
L'aff	Carmazione esatta à

L'affermazione esatta è					
Dimostrazione:					

5. (punti 7) Determinare i numeri complessi z tali che

$$\begin{cases} \exp(4iz - \pi) + 2ei \exp(2iz - \frac{\pi}{2}) - e^2 = 0 \\ |z| < 1. \end{cases}$$

Le soluzioni sono:

6. (punti 2) Le radici dell'equazione complessa

$$z^4 = 81i$$

- (a) sono due complesse coniugate ed una doppia reale
- (b) Sono o reali o immaginarie pure
- (c) Sono tutte non reali.
- (d) Sono tutte reali.

La risposta giusta è

7. (punti 2) Siano date le rette r e s di equazioni

$$r: \left\{ \begin{array}{l} x=1\\ y=-2t\\ z=1-3t \end{array} \right. \qquad s: \left\{ \begin{array}{l} x=-4\\ y=t\\ z=-t \end{array} \right.$$

(a) La distanza tra r ed $s \in 5$.	
(b) Esiste una ed una sola retta incidente entrambe.	
(c) Esiste un piano che contiene le due rette.	
(d) Le rette si incontrano.	
La risposta esatta è Dimostrazione:	
(punti 6)	
(a) Scrivere l'equazione del piano tangente in $P \equiv (-1, -1, -1)$ alla sfera S centro $O \equiv (0, 0, 0)$ passante per P	d
(b) Scrivere l'equazione della sfera tangente in P alla sfera S ed intersecante il pia di equazione	no
x - y + z - 15 = 0	

8.

in una circonferenza di raggio $r=4\sqrt{3}$