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This is a joint project with Karel Hrbacek and this presenta-
tion should be considered as a sequel to his.

So far, we had used a simplified version of nonstandard anal-
ysis for teaching at pre-university level. We worked in an
unformalised setting of ∗R

After several years, some questions arose:
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The questions:

1. If st(x) can be used to define the deriva-

tive, why is the “updown” function

f : x 7→ 2 · st(x)− x
not acceptable?

2. How is f ′(2 + δ) calculated?

with answers that can be used in high-

school...
3



The curse:

“We warn the reader that getting famil-

iar with the distinction between internal

and external objects is probably the hard-

est step in learning nonstandard analysis.”

(Benci, Forti, Di Nasso)
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We tried to teach without ever explicitly using transfer or
star-map, since these need some understanding of what mod-
els are: an impossible task at pre-university level.
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An answer:

Relative infinitesimals

with a switch from ∗R to R+ FRIST.
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If we want students to understand the concept of relative
infinitesimals, we need a “story” which should help guide
their intuition.

It must be noted that the understanding of these new con-
cepts is harder for the trained mathematician who has con-
flicting knowledge.
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Levels

We have been working so far at a very

coarse level in the reals, one where there

are no infinitesimals nor unlimited num-

bers.

Infinitesimals and unlimited numbers are

at a finer level.

These numbers are infinitesimal/unlimited

with respect to the coarser level.
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And there are finer levels still.
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The level of x,

noted v (x)

is the coarsest level containing x.

v (x, y, z) is the coarsest level containing

x, y and z

10



• At the coarsest level there are no in-
finitesimals.

• For any given level, there are numbers
not at that level, there are numbers at
a finer level.

• “a is at the level of b” is written
a ∈ v (b)

• If a number is at a given level it is also
at all finer levels.

11



We have already shown that infinitesimlas are very intuitive.
For almost all students, the existence of infinitesimals is “ob-
vious”.

The next concept is fundamental:
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A statement about x and parameters p1, . . . , pn

is

acceptable

if it does not refer to levels or if it refers

only to v (x, p1, p2, . . . , pn).
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Rule

Only acceptable statements can be used

to define sets and functions.
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Answer to question 1:

f : x 7→ 2 · sh0(x)− x
is not an acceptable function (reference to

an absolute level)

f : x 7→ 2 · shx(x)− x is f : x 7→ x

is not a problem...
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Derivative

Let f be a function and I an interval with
a ∈ I and v (a, f) = v (α)

f is differentiable at a iff there is an
L ∈ v (α) such that ∀h 'α 0

f(a+ h)− f(a)

h
'α L

then the derivative is

f ′(a) = L
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Answer to question 2:

This definitions is for all points.

f ′(2 + δ) is calculated taking infinitesimals

with respect to the level of 2 + δ, i.e. the

level of δ.
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Checking whether an object is acceptable

is purely syntactical — and quite simple:

Curse lifted.
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Because our syllabus includes limits, it is important to be able
to define them in this context.

(The mainstream teaching does not define the limit, or only
in a handwaving fashion.)
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Limits

Because R is complete, and because we

do not extend this set, any increasing se-

quence bounded above has a limit.

For v (f, a) = v (α) and L ∈ v (α)

lim
x→a f(x) = L

⇐⇒

∀x 'α a f(x) 'α L
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Derivative

Let f be a function and I an interval with

a ∈ I

f is differentiable at a iff there is a value

f ′(a) such that

lim
x→a

(
f(x)− f(a)

x− a

)
= f ′(a)
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Statements of most definitions and theo-

rems can be the same as in mainstream

mathematics.
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... even though the limit is interpreted following a different
definition: that of being infinitesimally close.

23



Compared to mainstream high-school teaching, the question
now becomes:

Do we want a theory in which we can give a rigorous definition
of limits and prove (and the students prove) the rules about
computation with limits, or do we stick to fuzzy handwaving
methods?
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Our syllabus requires that students study

real functions, limits, derivatives and inte-

grals. With relative infinitesimals we do

exactly that.

And we have infinitesimals.
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And we avoid ε-δ formalism, with all its technical difficulties.
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Irony

Acceptable statements and acceptable func-

tions are those that transfer, but because

acceptable properties apply to all values,

for most proofs transfer is not needed!
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The Closure Principle is used:

f(x) ∈ v (x, f)

Transfer is needed (explicitly) only for the

proofs of theorems about continuity: for

higher level mathematics students.

28



This approach has been “beta-tested” dur-

ing a maths weekend on two students who

had already studied the usual ε-δ method.

Iaroslav Gaponenko and Fabian Santi

(with colleague Olivier Lessmann)
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