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Note: This is a slightly simplified (there were several hand-drawn diagrams
and accompanying explanation used in the talk that are not reproduced here) and
somewhat corrected version of the slides for my talk given at NSM2006 in Pisa.
The format has also been changed to improve readability.

The motivation for the results is the following open question:
Does every non-separating plane continuum have the fixed point property? i.e.

is it true that if E ⊂ R2 is compact and connected with connected complement,
and f : E → E is continuous then f has a fixed point? An outline of a simple (or
simplistic) approach to the problem:

Definition 1. We will write ∂A for the boundary of a set A, and A for the closure
of A.

We will write B(a, r) for the open ball about a of radius r.
We will write C(a, A) for the connected component of A containing a.

Proposition 1. With E as in the statement of the theorem, for all δ > 0 there
exists a set D homeomorphic to the disk such that E ⊂ D and every point of D is
within δ of a point in E (thus E is a countable intersection of sets homeomorphic
to the disk).

The proposition is well known and the standard proof is not difficult. However
the nonstandard proof below is especially simple.

Proof. Let δ > 0 be standard and let ζ > 0 be infinitesimal. Let K be a (∗) finite
union of closed ζ- balls that cover E, and let

D = {p ∈ ∗R2 : p /∈ C(q0,
∗R2 − K)

Then there can be no δ-ball contained in D that does not intersect E, for if so it
is easy to see by taking standard parts that E would disconnect the plane. The
boundary of D (which is also the outer boundary of K) is a finite union of arcs of
circles, and it is easy to see that D is homeomorphic to the disk. �

Now let ε > 0 be infinitesimal. We will attempt to use the Brouwer Fixed
Point Theorem to approach the open question in the most straightforward possible
manner.
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As we did in the proof of proposition 1 we let K1 be a finite union of closed
ε-balls that cover ∗E and define a set H1 by:

H1 = {p ∈ ∗R2 : p /∈ C(q0,
∗ R2 − K1)

Thus, H1 consists of all points “enclosed” by K1.

Let f : E → E be continuous, and extend f continuously to all of R2.

We let the infinitesimal δ1 be small enough that if we define:

H ′ = {p ∈ ∗R2 : p /∈ C(q0,
∗ R2 − ∪q∈ ∗EB(q, δ1)}

then f(H ′) ⊂ H1. This is possible by proposition 1 and the continuity of f .

We are interested in sets of the following type: let U be a bounded connected
component of ∗R2− ∗E − B(a, ε) for some a ∈ ∗R2, and

Y = ∂(U ) ∪
{

p : p ∈ C(q,∗ E ∩ B(a, ε)) for some q ∈ ∂(U ) ∩ B(a, ε)
}

(OR there may be a union of two balls B(a1, ε) ∪ B(a2, ε) everywhere in the
above definitions).

Now about each point b of ∗E we will define an infinitesimal δ1
b as follows: if b is

in some set Y as defined above, and f(b) /∈ Y then δ1
b is such that

0 < δ1
b ≤ δ1 and f(B(b, δ1

b )) ∩ (Y ∪ U ) = ∅.

(we note that such a Y is closed). For all other points of ∗E we let δ1
b = δ1 .

We now let K2 be a finite union of closed δ1
b -balls that cover ∗E and

H2 = {p ∈ ∗R2 : p /∈ C(q0,
∗ R2 − K2).

We can now define a mapping g from H1 to H2 in such a way that g is the
identity on Hn and g(p) − p is infinitesimal for all p not in some set Y as above.
The mapping f ◦g now takes H2 to H2 and must have a fixed point by the Brouwer
Fixed Point Theorem. Taking standard parts, we obtain a fixed point for f , unless
both p and f(p) are in some set Y as above.

It is for this reason that the following proposition seems to be helpful.

Proposition 2. Let E ⊂ R2 be compact, connected and have a connected comple-
ment in the plane. Let f be a continuous function from E to E with no fixed point.
Given ε > 0, let U be a bounded connected component of ∗R2− ∗E − B(a, ε) for
some a ∈ ∗R2, and

Y = ∂(U ) ∪
{

p : p ∈ C(q,∗ E ∩ B(a, ε)) for some q ∈ ∂(U ) ∩ B(a, ε)
}

Then for all k ∈ N there does not exist a set of points a1, a2, ...ak ∈ ∗R2− R2such
that each ai and f(ai) is in Y , and f(a1) ≈ a2, f(a2) ≈ a3, ...f(ak) ≈ a1.

A very rough outline of the proof is as follows: We assume for the sake of
contradiction that such an E, f, k, U, Y, ai exist as in the statement of the theorem.
We note there must exist a real number d > 0 such that for all p ∈ E, ‖f(p) − p‖ >
d. There are two cases to consider.

Case i) ∗st(Y ) ∩ Y = ∅
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Case ii) ∗st(Y ) ∩ Y 6= ∅

Proposition 3. If p is in ∗st(Y ) ∩ Y then st(p) ∈ Y

Thus, case ii) is equivalent to the case that there exists a standard point in Y.
It can be shown that if there is more than one such standard point, then there are
infinitely many (and, in fact, there must be an infinite connected component of Y
that is standard in this case). We thus have:

Case iia) There exists exactly one standard point in Y .

Case iib) There exists an infinite connected component of Y that is standard.

In each of the cases above it is possible to define a sequence of polygonal “boxes”
B1, B2, ...Bm , with m finite, such that every ai and every f(ai) is contained in
one of the boxes, every two boxes with successive indices share one common side,
and sides of all the boxes not shared by another box are line segments completely
contained in ∗R2− ∗E. Furthermore, the only side of B1 that is not completely
contained in ∗R2− ∗E is the side it shares with B2 (the analogous statement for
Bm will not hold), and the maximum total distance between any two points in each
Bi is noninfinitesimal but small compared to d.

The way in which the Bi are constructed varies significantly among the cases
i), iia) and iib). For example, in case i) we make use of the fact that there is a
polygonal path in P in ∗R2− ∗E starting at some external point (well away from E)
that is within an infinititesimal distance of each of the ai and “separates” ∗st(Y )
from Y , i.e. is such that for every point y in Y and corresponding nearest point s in
∗st(Y ) there is a point in P nearer to y than s and nearer to s than y. The power of
the nonstandard approach comes from the fact that there must be infinitely many
standard polygonal paths in R2− E approaching such a P (as well as infinitely
many connected components of R2− E − (small standard balls) close to U , etc.).

Now, the assumption that f(a1) ≈ a2, f(a2) ≈ a3, ...f(ak) ≈ a1 implies that at
least one ai is such that it is contained in a higher-numbered box than f(ai).

Proposition 4. Assuming that Y ∩ ∗E is connected, if ai is contained in a higher-
numbered box than f(ai), then every point of Y in that box is mapped to a lower-
numbered box.

Although there are additional complications in the proof, letting j be the index
of the box containing ai, we begin by using the fact that the connected component
of Y ∩ Bj that contains ai must all map to points in lower numbered boxes, for
otherwise some element maps inside Bj , contradicting the fact that all points in Bj

are less than d apart.
The set Y is always connected, but it is possible that Y ∩ ∗E is not, and this case

is somewhat more difficult. Such a Y must be contained in a Y ′ that is defined in
a slightly modified way from the sets used here. Thus, essentially, this case can be
reduced to the case in which Y ∩ ∗E is connected.
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