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Introduction 
 
 

 Bridging the gap between the 
domains of discreteness and of 
continuity, or between arithmetic and 
geometry, is a central, presumably even 
the central problem of the foundations of 
mathematics.  

 
So wrote Abraham Fraenkel, Yehoshua Bar-
Hillel and Azrel Levy in their mathematico-
philosophical classic Foundations of Set Theory 
(1973, 211). Cantor and Dedekind of course 
believed they had bridged the gap with the 
creation of their arithmetico-set theoretic 
continuum,  !, of real numbers, and for roughly 



a century now it has been one of the central 
tenants of standard mathematical philosophy 
that indeed they had. In accordance with this 
view the geometric linear continuum is assumed 
to be isomorphic with the arithmetic continuum, 
the axioms of geometry being so selected to 
ensure this would be the case. In honor of 
Cantor and Dedekind, who first proposed this 
mathematico-philosophical thesis, the 
transference of  !’s purported continuity to the 
continuity of the Euclidean straight line has 
come to be called the Cantor-Dedekind axiom. 
Given the Archimedean nature of the real 
number system, once this axiom is adopted we 
have the classic result of standard mathematical 
philosophy that infinitesimals are superfluous to 
the analysis of the structure of a continuous 
straight line. 
  More than twenty years ago, however, we 
began to suspect that while the Cantor-Dedekind 
theory succeeds in bridging the gap between the 
domains of arithmetic and of classical Euclidean 
geometry, it only reveals a glimpse of a far 



richer theory of continua which not only allows 
for infinitesimals but leads to a vast 
generalization of portions of Cantor’s theory of 
the infinite, a generalization which also provides 
a setting for Abraham Robinson’s infinitesimal 
approach to analysis as well as for the profound 
and all too often overlooked non-Cantorian 
theories of the infinite (and infinitesimal) 
pioneered by Giuseppe Veronese (1891), Tullio 
Levi-Civita (1892; 1898), David Hilbert (1899) 
and Hans Hahn (1907) in connection with their 
work on non-Archimedean ordered algebraic 
and geometric systems and by Paul du Bois-
Reymond (1871-1882), Otto Stolz (1883), Felix 
Hausdorff (1907; 1909) and G. H. Hardy (1910; 
1912) in connection with their work on the rate 
of growth of real functions. Central to the theory 
is J. H. Conway’s theory of surreal numbers 
(1976) and the present author’s amplifications 
and generalizations thereof and other 
contributions thereto.  
 In a number of earlier works (Ehrlich 1987; 
1989; 1992; 1994; 2005), we suggested that 



whereas the real number system should be 
regarded as constituting an arithmetic 
continuum modulo the Archimedean axiom, the 
system of surreal numbers may be regarded as a 
sort of absolute arithmetic continuum (modulo 
von Neumann-Bernays-Gödel set theory with 
global choice, henceforth NBG). In the present 
discussion we will outline some of the 
properties of the system of surreal numbers that 
we believe lend credence to this thesis, and 
draw attention to the unifying framework this 
system provides not only for the systems of real 
and ordinal numbers but for the various other 
sorts of systems of numbers great and small 
alluded to above.  
 

 
1. All Numbers Great and Small 

 
 In his monograph On Numbers and Games 
(1976), J. H. Conway introduced a real-closed 
field containing the reals and the ordinals as 
well as a great many less familiar numbers 



including !" , ! 2, 1 ! , !  and ! "#  to 
name only a few. Indeed, this particular real-
closed field, which Conway calls No, is so 
remarkably inclusive that, subject to the proviso 
that numbers--construed here as members of 
ordered “number” fields--be individually 
definable in terms of sets of NBG, it may be 
said to contain “All Numbers Great and Small.” 
In this respect, No bears much the same relation 
to ordered fields that the system of real numbers 
bears to Archimedean ordered fields. This can 
be made precise by saying that: 
 
Whereas  ! is (up to isomorphism) the unique 
homogeneous universal Archimedean ordered 
field, No is (up to isomorphism) the unique 
homogeneous universal ordered field (Ehrlich 
1988; 1992). 
 
 However, in addition to its distinguished 
structure as an ordered field, No has a rich 
hierarchical structure that emerges from the 
recursive clauses in terms of which it is defined. 



From the standpoint of Conway’s construction, 
this algebraico-tree-theoretic structure, or 
simplicity hierarchy, as we have called it 
[Ehrlich 1994], depends upon No’s implicit 
structure as a lexicographically ordered binary 
tree and arises from the fact that the sums and 
products of any two members of the tree are the 
simplest possible elements of the tree consistent 
with No’s structure as an ordered group and an 
ordered field, respectively, it being understood 
that x  is simpler than y  just in case x  is a 
predecessor of y  in the tree.  
 In  [Ehrlich 1994], the just-described 
simplicity hierarchy was brought to the fore and 
made part of an algebraico-tree-theoretic 
definition of No, and in [Ehrlich 2002] we 
introduced a novel class of structures whose 
properties generalize those of No so construed 
and explored some of the relations that exist 
between No and this more general class of s-
hierarchical ordered structures as we call them. 
We defined a number of types of s-hierarchical 
ordered structures--groups, fields, vector spaces-



-as well as a corresponding type of s-
hierarchical mapping, identified No as a 
complete s-hierarchical ordered group (ordered 
field; ordered vector space), and showed that 
there is one and only one s-hierarchical mapping 
of an s-hierarchical ordered structure into No 
(or any complete s-hierarchical ordered 
structure, more generally). These mappings 
were found to be monomorphisms of their 
respective kinds whose images are initial 
subtrees of No, and this together with the 
completeness of No enabled us to characterize 
No, up to isomorphism, as the unique complete 
as well as the unique nonextensible and the 
unique universal, s-hierarchical ordered group 
(ordered field, etc.). Following this, we turned 
our attention to uncovering the spectrum of s-
hierarchical ordered structures. Given the nature 
of No alluded to above, this reduced to 
revealing the spectrum of s-hierarchical 
substructures of No, i.e., the subgroups, 
subfields, subspaces of No that are initial 
subtrees of No. Among the striking results that 



emerged from the latter investigation is that 
much as the surreal numbers emerge from the 
empty set of surreal numbers by means of a 
transfinite recursion that provides an unfolding 
of the entire spectrum of numbers great and 
small (modulo the aforementioned provisos), the 
recursive process of defining No’s arithmetic in 
turn provides an unfolding of the entire 
spectrum of ordered number fields in such a 
way that an isomorphic copy of each such 
system either emerges as an initial subtree of 
No or is contained in a theoretically 
distinguished instance of such a system that 
does. In particular, we showed that 
 
Every real-closed ordered field is isomorphic to 
an initial subfield of No. 
 
 This result, as we shall later see, plays a 
significant role in the unification referred to 
above. 

 



2. The Surreal Number Tree 
 

 In von Neumann’s ordinal construction, an 
ordinal emerges as the set of all its predecessors 
in the ‘long’ though rather trivial binary tree 
Ord,!  of all ordinals. Inspired by von 

Neumann’s construction, in the following 
construction each surreal number x  emerges as 
an ordered pair L

x
,R

x( ) of sets of surreal 
numbers where L

x
 and R

x
 turn out to be the sets 

of all predecessors of x  less than x  and greater 
than x , respectively, in the lexicographically 
ordered full binary tree of surreal numbers 
(Ehrlich 1994; 2002).  

 
Construction of Games 

 
 If L  and R  are any two sets of games, then 
there is a game L,R( ). All games are 
constructed in this way. 
 
 



Preliminary Definitions 
 

 A game x  is said to be simpler than a 
game y = L

y
,R

y( ), written x <s
y, if x !L

y
 or 

x !R
y
; a chain of games (ordered by <

s
) is 

said to be ancestral if it is closed under the 
simpler than relation, i.e., x  is a member of 
the chain whenever y  is a member of the 
chain and x <s

y; and a partition L,R of an 
ancestral chain of games is said to be orderly, 
if L ! L

x
 and R

x
! R  for each element 

x = L
x
,R

x( ) of the chain. 
 

Construction of Surreal Numbers 
 

 If L,R is an orderly partition of an 
ancestral chain of surreal numbers, then there 
is a surreal number L,R( ). All surreal 
numbers are constructed in this way. 
 

 



 At this point it is not difficult to show that 
!No,<

s
" is a full binary tree where the 

definition of the simpler than relation for 
surreal numbers is inherited from the 
definition for games. For this purpose, 
however, it is convenient to have available the 
ordinals. If one wishes, one could avail 
oneself of the von Neumann ordinals, which 
are already at hand. On the other hand, if one 
wants to develop the theory of ordinals within 
the theory of surreal numbers, as we intend to, 
before proving the above theorem one must 
first identify “our” ordinals.   
 

 
Isolation of the Ordinals 

 
 A surreal number L,R( ) will be said to be 
an ordinal if R =!. By On we mean the class 
of ordinals so defined. For all ordinals 
x = L

x
,!( ) and y = L

y
,!( ), x  will be said to 

be less than y , written x <On y , if L
x
! L

y
. 



Theorem. The ordered class of ordinals (so 
defined) has the requisite properties possessed 
by any of the more familiar constructs so called. 
 
 
Theorem. !,!( ) is a surreal number; if 
x = L

x
,R

x( ) is a surreal number, then 
L
x
, x{ }! R

x( ) and L
x
! x{ },R

x( ) are surreal 
numbers; moreover, if x!{ }

!<"
 is a chain of 

surreal numbers of infinite limit length, then 

 
L
x!!<"U , R

x!!<"U( ) is a surreal number. Nothing 
is a surreal number except in virtue of the 
above. 
 

 
The Rule of Order  

 
 For all surreal numbers x = L

x
,R

x( ) 
andy = L

y
,R

y( ), x < y  if and only if x !L
y
 or 

y!R
x  or R

x
! L

y
" # . 

 



Corollary. For each surreal number x , 
  

x = L
s x( ),Rs x( )( )  

where 
 

L
s x( ) = {a!No :a <s

x& a < x } 
and  

R
s x( ) = {a!No :a <s

x& x < a }. 
 
Moreover, if x  is an ordinal, then 
 

x = L
s x( ),!( ). 

 
 
 
Theorem. Let No be the class of surreal 
numbers. 

! 

No,<,<
s

 is isomorphic to the 
familiar lexicographically ordered full binary 
tree consisting of sequences of 0s and 1s. 
 

 



3. The s-Hierarchical Ordered Field of 
Surreal Numbers 

  
 
Convention. If L  and R  are subsets of an 
ordered class A  where every member of L  
precedes every member of R , we will write 
L < R . 
 
 
Proposition. If L  and R  are two subsets of No 
for which L < R , there is a simplest member of 
No lying between the members of L  and the 
members of R . Henceforth, the simplest such 
element will be denoted ‘{L | R}’. 
 
 
Proposition. For all x !No, there are (possibly 
empty) subsets L  and R  of No such that L < R  
and for which x = {L | R}; in particular, 
x = {L

S(x )
| R

S(x )
}. 

 
 



Theorem (Conway 1976; Ehrlich 2001). 
!No,<,<

S
,+,",.# is a ordered field when +,!  

and . are defined by recursion as follows where 
x
L , xR , yL  and yR  are understood to range over 

the members of L
s x( ),Rs x( ),Ls y( ) and R

s y( ) , 
respectively. 
 
Definition of x + y. 
 

x + y = {x
L
+ y, x + y

L
| x

R
+ y, x + y

R
}. 

 
Definition of !x. 
 

!x = {!x
R
| !x

L
}. 

 
Definition of xy. 
 

xy = {x
L
y + xy

L
! x

L
y
L
, x

R
y + xy

R
! x

R
y
R
|

x
L
y + xy

R
! x

L
y
R
, x

R
y + xy

L
! x

R
y
L
}

. 

 
 



In fact, !No,<,<
S
,+,",.# is (up to isomorphism) 

the unique real-closed ordered field that is an 
!
On
"ordering (Ehrlich 1988).  

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Surreal Numbers Have Their Own Proper 
Names   

 
 A remarkable surreal feature is that ordinal 
exponentiation with base !  extends to an 
operation  x a! x

:No" No in such a way that 
every surreal number a can be written uniquely 
as a generalized power series  
 

! y" .r"
"<#
$  

 
in !  with real coefficients and surreal 
exponents (called the Conway name or normal 
form of a). 
 
 The following result sheds light on the 
relationship between surreal numbers and their 
Conway names. 
 
 
 



Theorem. Every surreal number has a Conway 
name; distinct surreal numbers have distinct 
Conway names; furthermore, the formal 
expression 
 

! y" .r"
"<#
$  

 
is the Conway name of some surreal number if 
and only if {y! :! < " #On} is a (possibly 
empty) descending sequence of members of  No 
and  {r! :! < "} is a sequence of nonzero real 
numbers. In addition, the Conway name of an 
ordinal is just its Cantor Normal Form. 
 

 
 
 
 
 
 
 
 



5. The Unification of  
Numbers Great and Small 

 
(i) Non-Archimedean Ordered (Number) 

Fields Inspired by Non-Archimedean 
Geometry 

 
 
Theorem (Hahn 1907). (i) Let  ! be the ordered 
field of real numbers and G  be a nontrivial 
ordered Abelian group. The collection,  ! G( ), of 
all series  

 
e
y!
.r!

!<"
#  

 
where {y! :! < " #On} is a (possibly empty) 
descending sequence of members of G  and 
{r! :! < "} is a sequence of members of  ! - 0{ } 
is a non-Archimedean ordered field when the 
order is defined lexicographically and sums and 
products are defined termwise (it being 
understand that 

! 

ex "ey = ex+ y). 



(ii) The restricted structure,  ! G( )
!

, that results 
by limiting the above construction to those 
series where !  is less than a given infinite 
cardinal !"  is likewise a non-Archimedean 
ordered field. 
 
 
Theorem (Ehrlich 1988). There is isomorphism 
from No onto  ! No( )

On
 that sends the surreal 

number a having Conway name “ ! y" .r"
"<#
$ ” to 

e
y!
.r!

!<"
# . 

 
 

 
 
 
 
 
 
 



(ii) Paul du Bois-Reymond’s Infinitärcalcül  
(calculus of infinities) 

 
 Du Bois-Reymond (1870-1882) erects his 
calculus primarily on families of increasing 
functions from  !

+ = x !!"x > 0{ } to  ! such 
that for each function f  of a given family, 
lim
x!"

f (x) = +", and for each pair of functions f  
and g  of the family, 0 ! lim

x"#
f (x) g(x) ! +#. He 

assigns to each such function f  a so-called 
infinity, and defines an ordering on the infinities 
of such functions by stipulating that for each 
pair of such functions f  and g : 
 
 f x( ) has an infinity greater than that of g x( ), 
if lim

x!"
f (x) g(x) = "; 

f x( ) has an infinity equal to that of g x( ), if 

 
lim
x!"

f (x) g(x) = a#!+ ;  
f x( ) has an infinity less than that of g x( ), if 
lim
x!"

f (x) g(x) = 0 . 



Otto Stolz (1883) 
 

 “Zur Geometrie der Alten, insbesondere über 
ein Axiom des Archimedes”, Mathematische 
Annalen  22, 504-519.  

 
 Stolz considers the set of all functions 
 f :!

+
!!+  formed by means of finite 

combinations of the operations +,  -, !, and ÷  
from positive rational powers of the functions 
x, ln x, ln(ln x),...;e

x
,e

e
x

,e
e
e
x

,... where ln x  is the 
natural logarithm of x  and e is the base of the 
natural logarithm. Following du Bois-Reymond, 
Stolz assigns to each such function f  an infinity 
-- which he denotes by “ !( f )” -- and defines an 
ordering on the infinities of such functions in 
the manner specified above. To complete the 
construction, Stolz defines addition and 
subtraction of the infinities by the rules: 
 
 !( f )+!(g) = !( f !g) 
 !( f )!!(g) = !( f g), if  !( f ) > !(g). 



  Hausdorff (1907), working in a more 
general setting, calls a maximal set of such 
functions totally order by the “final order” a 
pantachie and he establishes the following 
results for an arbitrary pantachie  !P

. 
 

 
Hausdorff (1907).  !P

 is an !
1
"ordering of 

power 2
!
0 . Moreover,  !P

 is (up to 
isomorphism) the unique !

1
"ordering of power 

!
1
, assuming the Continuum Hypothesis. 

 
 
Hausdorff (1909); Boshernitzan (1981).  !P

 
(with sums and products defined in the manner 
familiar from the theory of Hardy fields) is a 
real-closed ordered field.  
 
  
 
 
 



Let 

! 

No "
1

( ) be the subset of 

! 

No consisting 
of all surreal numbers having tree rank 

! 

<"
1
.  

 
Theorem (Ehrlich).  !P

 (considered as an 
ordered field) is isomorphic with an initial 
subfield of No extending 

! 

No "
1

( ); assuming the 
Continuum Hypothesis,  !P

 is in fact isomorphic 
to 

! 

No "
1

( ). Moreover, the orders of infinity of 
the members of  !P

 is isomorphic to the value 
group (i.e. the ordered Abelian group of 
Archimedean classes) of 

! 

No "
1

( ).  
 
 
 
 
 
 
 
 
 
 
 



(i) Nonstandard models of analysis 
 
 

H. J. Keisler’s Axioms For Hyperreal  
Number Systems 

 
 

Axiom A.  ! is a complete ordered field. 
 
Axiom B.  !* is a proper ordered field extension 
of  !. 
 
Axiom C. (Function Axiom). For each function 
f  of n variables there is a corresponding 
hyperreal function f * of n variables, called the 
natural extension of f . The field operations of 
 !* are the natural extensions of the field 
operations of  !. 
 
Axiom D. (Solution Axiom). If two systems of 
formulas [i.e., finite sets of equations or 
inequalities between terms] have exactly the 
same real solutions, they have exactly the same 
hyperreal solutions. 
 



 
“The real numbers are the unique complete 

ordered field. By analogy, we would like to 
uniquely characterize the hyperreal structure 
 !,!*,*  by some sort of completeness 
property. However, we run into a set-theoretic 
difficulty; there are structures  !* of arbitrary 
large cardinal number which satisfy Axioms A-
D, so there cannot be a largest one. Two ways 
around this difficulty are to make  !* a proper 
class rather than a set, or to put a restriction on 
the cardinal number of  !*. We use the second 
method because it is simpler.” (Keisler 1976, p. 
59)  

 
Saturation Axiom 

 
Axiom E. Let S  be a set of equations and 
inequalities involving real functions, hyperreal 
constants, and variables, such that S  has a 
smaller cardinality than  !*. If every finite 
subset of S  has a hyperreal solution, then S  has 
a hyperreal solution. 



 Theorem (Keisler 1976). There is up to 
isomorphism a unique structure  !,!*,*  such 
that Axioms A-E are satisfied and the 
cardinality of  !* is the first uncountable 
inaccessible cardinal.  
 
Theorem (Keisler, Ehrlich). In NBG there is up 
to isomorphism a unique structure  !,!*,*  
such that Axioms A-E are satisfied and the 
cardinality of  !* is a proper class. Moreover, 
 !* is isomorphic to No. 
 

  
 

H. J. Keisler to Ehrlich 
(Private Communication: 

September 26, 2002) 
 
 

“What I had in mind in getting around the 
uniquess problem for the hyperreals in 
"Foundations of Infinitesimal Calculus" was to 
work in NBG with global choice (i.e. a class of 



ordered pairs that well orders the universe).  
This is a conservative extension of ZFC. I was 
not thinking of doing it within a superstructure, 
but just getting four objects R, R*, <*, * which 
satisfy Axioms A-E. R is a set, R* is a proper 
class, <* is a proper class of ordered pairs of 
elements of R*, and * is a proper class of 
ordered triples (f,x,y) of sets, where f is an n-ary 
real function for some n, x is an n-tuple of 
elements of R*, and y is in R*. In this setup, 
f*(x)=y means that (f,x,y) is in the class *. 
There should be no problem with * being a 
legitimate entity in NBG with global choice. 
Since each ordered triple of sets is again a set, * 
is just a class of sets. I believe that this can be 
done in an explicit way so that R, R*, <*, and * 
are definable in NBG with an extra symbol for a 
well ordering of V.” 
 

 
 


