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The stochastic non-homogeneous (i.e. non-constant density) incompressible

Navier-Stokes equations with multiplicative noise are:

(Velocity) ρdu = [ν∆u− < ρu,∇ > u−∇p + ρf(t, u)] dt + ρg(t, u)dwt

(1)

(Density)
∂ρ

∂t
+ < u,∇ > ρ = 0

(2)

(Incompressibility) div u = 0

(Boundary condition) u|∂D = 0

(Initial conditions) u|t=0 = u0 and ρ|t=0 = ρ0

These model the velocity u and density ρ of a mixture of viscous incompressible

fluids of varying density in a bounded domain D ⊂ Rd (d = 2,3). As usual p

is the pressure; f represents external forces and the term gdw (where w is a

Wiener process) represents additional random forces.



(1) g = 0 gives the deterministic nonhomogenous equations. Kazhikhov

(1974) - assuming ρ0 ≥ m > 0 and Simon (1978,1990), Kim (1987) assuming

only ρ0 ≥ 0. More recently: local existence of strong solutions have been

obtained (Boldrini–Medar (2003), Choe, Cho & Kim (2003,2004)

(2) The stochastic equations with additive noise (dG = gdw does not depend

on u) - Yashima (1992) assuming ρ0 ≥ m > 0. Solved essentially pathwise.

(3) Here: the stochastic equations with general multiplicative noise are solved

for d = 2,3 assuming ρ0 ≥ m > 0.

Techniques: Loeb spaces, hyperfinite dimensional approximation and standard-

ization. (This gives possibly simpler proof for the deterministic equations).



Hilbert space formulation for Navier-Stokes equations

(a) the velocity field

u(t, ω) ∈ H ⊆L2(D;Rd)

H is the Hilbert subspace of divergence free vector fields on the physical domain

D ⊂ Rd (d = 2 or 3). D is bounded, open with a sufficiently smooth boundary.

V ⊂ H is the subspace of “differentiable” velocity fields on D.

The self-adjoint extension of the projection of −∆, denoted by A has an or-

thonormal basis of eigenfunctions {ek}k∈N ⊂ H with eigenvalues 0 < λk ↗ ∞.

For u ∈ H write u =
∑

ukek. Write Hn = span{e1, e2, . . . , en} and Prn for the

projection onto Hn. Each u ∈ Hn is still a velocity field on the whole of D.

(b) the density ρ(t, ω) is assumed to belong to L∞(D).

(c) the “noise” is taken here to mean a Wiener process with values in the space

H (i.e. each value is an entire velocity field).



The chief difficulties with the Navier-Stokes equations stem from the un-

bounded quadratic term < ρu,∇ > u and usually (in physical dimension 3)

they can only be solved in a weak sense (one of the Millennium problems:

strong existence in dim d = 3) even for constant density. For non-constant

density (as here) there are additional problems to do with the feedback from

the density equation. For this reason an even weaker type of solution is gen-

erally sought. Weak means in the same sense as for a weak topology: the

equations are “tested” against suitable test functions (see below).

Definition of solution

The definition of a weak solution to the stochastic equations is the natural

generalization of that used by Kazhikov for the case g = 0. Both the velocity

and the density will be stochastic processes living on an adapted probability

space Ω = (Ω,F ,(Ft)t≥0, P )



Definition 1 Given u0 ∈ H, ρ0 ∈ L∞(D), f : [0, T ] × H → H and g : [0, T ] ×
H →L(H,H) a pair of stochastic processes (ρ, u) is a weak solution to the

stochastic nonhomogeneous Navier-Stokes equations if

(i) u ∈ L2([0, T ]×Ω,V) and for a.a. ω

u(·, ω) ∈ L∞(0, T ;H) ∩ L2(0, T ;V)

(ii) ρ ∈ L∞([0, T ]×D ×Ω)

(iii) (Velocity) for almost all T0 ≤ T, for all Φ ∈ C1(0, T ;V)

(ρ(T0)u(T0),Φ(T0))− (ρ0u0,Φ(0))

=
∫ T0

0

[
(ρu,Φ′ + 〈u,∇〉Φ)− ν((u,Φ)) + (ρf,Φ)

]
dt +

∫ T0

0
(Φ, ρg)dw

(iv) (Density) for all ϕ ∈ C1(0, T ;H1(D)), for all T0 ≤ T

(ρ(T0), ϕ(T0))− (ρ0, ϕ(0)) =
∫ T0

0
(ρ, ϕ′ + 〈u,∇〉ϕ)dt

(v) ρ(0) = ρ0 and u(0) = u0

When g = 0 this gives Kazhikhov’s original definition of a weak solution for the

deterministic equations.



Main Theorem Suppose that u0 ∈ H and ρ0 ∈ L∞(D) with 0 < m ≤ ρ0(x) ≤ M ,

and f, g satisfy natural continuity and growth conditions. Then there is a weak

solution (ρ, u) to the stochastic nonhomogeneous Navier-Stokes equations with

E

sup
t≤T

|u(t)|2 + ν

T∫
0

||u(t)||2 dt

 < ∞

and for almost all ω, for all t

m ≤ ρ(t, x) ≤ M for almost all x



Main idea of the proof

1. Solve a modified hyperfinite dimensional approximation of the equations with

velocity field U(τ, ω) with values in HN , using the transfer of finite dimensional

SDE theory. This will live on an internal adapted probability space Ω0 =

(Ω,A, (Aτ)τ≥0, Π ) carrying an internal Wiener process W (τ, ω) also with values

in HN . The density will take the form R(τ, ω) with values in ∗C1(D) ⊂ ∗L∞(D).

2. Prove an “energy estimate” showing that for almost all (τ, ω) the field

U(τ, ω) is nearstandard.

3. Show that for almost all (τ, ω) the density R(τ, ω) is nearstandard

4. Establish appropriate S-continuity in the time variable τ

5. Take standard parts u(◦τ, ω) = ◦U(τ, ω) and ρ(◦τ, ω) = ◦R(τ, ω)

6. Show that the pair (u, ρ) is a solution to the stochastic nonhomogeneous

Navier-Stokes equations on the adapted Loeb space

Ω = (Ω,F , (Ft)t≥0, P )

where P = ΠL, F = L(A) and (Ft)t≥0 is the usual filtration obtained from

(Aτ)τ≥0 in the usual way.



Step 1(a) in the solution is to solve the density equation for a single path of

the evolution of the velocity in any of the finite dimensional subspaces Hn:

Lemma 1 If y = (yt)t∈[0,T ] ∈ C(0, T ;Hn) and ρ0 ∈ C1(D) with

0 < m ≤ ρ0(x) ≤ M

then the equation

∂ρ

∂t
(t, x)+ < y(t),∇ > ρ(t, x) = 0 (3)

ρ(0, x)) = ρ0(x)

has a unique solution ρ(t, x) ∈ C1([0, T ]×D). The solution has

0 < m ≤ ρ(t, x) ≤ M

for all (t, x). The dependence of ρ on y is continuous; that is, if r(y) denotes

the solution to the density equation (3), so that

r : C(0, T ;Hn) → C1([0, T ]×D)

then r is continuous with respect to the uniform topologies on both sides.



Hyperfinite approximation of dimension N (infinite).

This is for a pair of internal stochastic processes (R, U) with R : ∗[0, T ]×Ω →
∗C1(D) and U : ∗[0, T ] ×Ω → HN where Ω carries the internal space Ω0 with

internal Wiener process W : for ∗a.a. ω

R(τ)dU(τ) = [−R(τ)〈U(τ),∇〉U(τ)− νAU(τ) + R(τ)∗f(τ, U(τ))]dτ

+ R(τ)∗g(τ, U(τ))dWτ

dR

dτ
+ < U(τ),∇ > R(τ) = 0

with prescribed initial conditions U(0) = U0 ∈ HN and R(0) = R0 ∈ ∗C1(D).

We need to modify these equations to avoid blow up caused by the quadratic

term. Fix an infinite number κ and for V ∈ HN define the truncation V by

V =

{
V if |V | ≤ κ

κV/|V | if |V | ≥ κ

The modified equations are then

R(t)dU(τ) = [−R(τ)〈U(τ),∇〉U(τ)− νAU(τ) + R(τ)∗f(τ, U(τ))]dτ (4)

+ R(τ)∗g(τ, U(τ))dWτ

dR

dτ
+ < U(τ),∇ > R(τ) = 0 (5)

For these we have:



Theorem 1 If U0 ∈ HN is finite and R0 ∈ ∗C1(D) with 0 < m ≤ R0(ξ) ≤ M

then the internal modified equations (4,5) have an internal solution (R, U) with

the following properties:

(a) There is a finite constant E (independent of N) such that

E

sup
τ≤T

|U(τ)|2 + ν

T∫
0

||U(σ)||2 dσ

 < E (6)

(b) For ∗a.a. ω,for all τ and ξ

m ≤ R(τ, ξ, ω) ≤ M

The internal modified hyperfinite dimensional equations are solved by using

the function r(y) giving the density for a single velocity path to continuously

feedback into the velocity equation, giving a single hyperfinite dimensional

past-dependent stochastic equation for the velocity. This can be solved by

“standard” techniques.

A solution to the stochastic non-homogeneous Navier-Stokes equations will

be obtained by taking standard parts of the internal pair (R, U) solving the

modified equations (4,5).



Important observation

It follows from the energy bound (6) that for a.a. ω (with respect to P, the

Loeb measure)

|U(τ, ω)| is finite and so U(τ, ω) = U(τ, ω) for all τ

and

for almost all times τ, ||U(τ, ω)|| is finite.

The importance is that for U ∈ HN

I if |U(τ)| is finite then U(τ) is weakly nearstandard

I if ||U(τ)|| is finite then U(τ) is strongly nearstandard.

Before we can take standard parts we need two further properties of the evo-

lution of the internal density (R(τ), U(τ)) = (density, velocity).



Lemma 2 For almost all ω the function R(τ)U(τ) is weakly S-continuous; that

is, if σ, τ ∈ ∗[0, T ] with σ ≈ τ then R(σ)U(σ) ≈ R(τ)U(τ) weakly in H.

This is proved by showing that R(τ)U(τ) is the solution of an internal weak

stochastic integral, for which the corresponding weak integral is shown to be

S-continuous in a conventional way. (We would like to have U(τ) weakly S-

continuous; the weaker condition proved in this Lemma is the reason for the

weaker definition of solution.)

The second result is:

Lemma 3 For almost all ω, whenever ||U (σ)|| , ||U (τ)|| are finite (which hap-

pens for almost all times τ, σ) and σ ≈ τ then U (σ) ≈ U (τ) strongly in H.

This means that the standard part will be “almost continuous” in the strong

topology. The proof is technical, using Lemma 2.



Solving the stochastic non-homogeneous Navier-Stokes equations.

Theorem 2 (Main Existence Theorem) Suppose that u0 ∈ H and ρ0 ∈ L∞(D)

with 0 < m ≤ ρ0(x) ≤ M , and f, g satisfy appropriate growth and continuity con-

ditions. Then there is a weak solution (ρ, u) to the stochastic nonhomogeneous

Navier-Stokes equations with

E

sup
t≤T

|u(t)|2 + ν

T∫
0

||u(t)||2 dt

 < E

and for almost all ω, for all t

m ≤ ρ(t, x) ≤ M for almost all x

Proof. (Outline) Take R0 ∈ ∗C1(D) with R0 ≈ ρ0 in the weak* topology

(possible since C1(D) is dense in L1(D).

Let (U(τ), R(τ)) be the solution to the modified hyperfinite dimensional Galerkin

equations as above with (4–5) as defined in the previous section, with U(0) =

Pr ∗u(0) and R(0) = R0. For almost all ω we have the conclusions of the

previous lemmas.



Definition of u. u(t, ω) = ◦U(τ, ω)

for a.a. ω, and for t ≈ τ for which ||U(τ, ω)|| < ∞. Then U(τ, ω) is a lifting of

u(t,ω), and U(·, ω) is an SL2 lifting for a.a. ω.

Definition of ρ

For a.a. ω, we have R(τ, ω) ∈ ∗L∞(D) and |R(τ, ω)| ≤ M for all τ so we can

take the standard part ◦R(τ, ω) (in the weak* topology). The internal density

equation for R + the fact that supτ≤T |U(τ, ω)| is finite is used to show that

R(·, ω) is weak* S-continuous for a.a. ω, so we define :

ρ(t, ω) = ◦R(τ, ω)

for any τ ≈ t. Then ρ ∈ L∞([0, T ] × D × Ω) and m ≤ ρ(t, x, ω) ≤ M for a.a.

(t, x, ω).

It is relatively routine to show that the pair (ρ, u) is a solution to the equations.

The tools are Loeb-Bochner integration theory for the deterministic terms and

the extension of Anderson’s stochastic integration theory to the continuous

time and infinite dimensional setting.



Regularity in dimension 2

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there

is more regularity to the solution, provided g has a little more regularity.

Theorem 3 Suppose that d = 2 and the initial condition u0 ∈ V and (ρ, u) is

the solution to the stochastic non-homogeneous Navier-Stokes equations con-

structed above. Suppose further that g : [0, t]×V →L(H,V) and |g(t, u)|H,V ≤
a(t)(1 + ||u||). Then almost surely:

(a) sup
t∈[0,T ]

||u(t)||+
∫ T
0 |Au(t)|2dt < ∞ where A = −∆;

(b) u(t) is strongly continuous in H and weakly continuous in V;

(c) the equation for u(t, ω) holds for all T0 ≤ T .



The deterministic nonhomogeneous Navier-Stokes equations

Putting g = 0 throughout the above proof simplifies and gives a new (simpler?)

proof of existence (and regularity if d = 2) for the deterministic nonhomoge-

neous incompressible Navier-Stokes equations.

For the additional regularity when d = 2, we can achieve a little more:

Theorem 4 Suppose that d = 2 and the initial condition u0 ∈ V and (ρ(t), u(t))

is the solution to the deterministic non-homogeneous Navier-Stokes equations

constructed by taking g = 0 in the previous theorem. Then

sup
t∈[0,T ]

||u(t)||+
∫ T

0
|Au(t)|2dt +

∫ T

0
|ut(t)|2 dt < ∞

where ut denotes the time derivative
du

dt
;
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