APPROXIMATE EXTENSION OF PARTIAL ε-CHARACTERS OF ABELIAN GROUPS TO CHARACTERS WITH APPLICATION TO INTEGRAL POINT LATTICES

PAVOL ZLATOŠ

Subject Class: Primary 20K30; Secondary 11H06, 11U07. Key words: Abelian group, dual group, partial ε -homomorphism, approximate extension, Ulam's problem, integral point lattice, dual lattice.

[Joint work with Martin Mačaj.]

Let G be an abelian group, $S \subseteq G$ be a finite set, and \mathbb{T} denote the multiplicative group of complex units with the invariant arc metric $|\arg(a/b)|$.

We will show that for a mapping $fS \to \mathbb{T}$ to be ε -close on S to a character $\varphi G \to \mathbb{T}$ it is enough that f be extendable to a mapping $\overline{f}(S \cup \{1\} \cup S^{-1})^n \to \mathbb{T}$, where n is big enough and \overline{f} violates the homomorphy condition at most up to an arbitrary $\delta < \min(\varepsilon, \frac{\pi}{2})$. Moreover, n can be chosen uniformly, independently of G and both f and \overline{f} , depending just on δ , ε and the number of elements of S.

The proof is non-constructive, using a special case of Gordon's nonstandard version of Pontryagin-van Kampen duality [1], [2] or, alternatively, the ultraproduct construction and the classical Pontryagin-van Kampen duality, hence yielding no estimate on the actual size of n.

As one of the applications we show that, for a vector $u \in \mathbb{R}^q$ to be ε close to some vector from the dual (polar, reciprocal) lattice H^* of a full rank integral point lattice $H \leq \mathbb{Z}^q$, it is enough for the scalar product uxto be δ -close (with $\delta < 1/3$) to an integer for all vectors $x \in H$ satisfying $\sum_i |x_i| \leq n$, where n depends on δ , ε and q only.

References

- E. I. Gordon, Nonstandard analysis and locally compact abelian groups, Acta Appl. Math. 25 (1991), pp. 221–239.
- [2] E. I. Gordon, Nonstandard methods in commutative harmonic analysis, Translations of mathematical monographs vol. 164, A.M.S., Providence R.I., 1997.
- [3] D. Kazhdan, On ε-representations, Israel J. Math. 43 (1982), pp. 315–323.
- [4] M. Mačaj, P. Zlatoš, Approximate extension of partial ε-characters of abelian groups to characters with application to integral point lattices, Indag. Math. 16 (2005), pp. 237–250.
- [5] L. S. Pontryagin, Continuous groups 3rd ed. (Russian), Nauka, Moscow, 1973.

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

 $E\text{-}mail\ address: \texttt{zlatos@fmph.uniba.sk}$