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We discuss the solution of the non-homogeneous stochastic Navier-Stokes equations:
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for the velocity field of a viscous incompressible fluid in a bounded domain D C R
(d = 2,3) with density p that is not constant. The term p is the pressure; f represents
external forces and the term gdw (where w is a Wiener process) represents additional
random forces. Weak solutions for the deterministic equations (that is, with g = 0)
were first found by Kazhikhov [4] (see also [1]) in space dimensions d = 2,3. A stochastic
version with additive noise (that is, with g = 1) was solved by Yashima [5].

We will outline the construction of solutions to the above equations with a general
external force and multiplicative noise, using an extension of the Loeb space methods
first used to solve them in the homogeneous (i.e. p = constant) case [2, 3]. The role played
by nonstandard methods is two-fold.

(1) Finite-dimensional approximations are ”easily” solved. So we can take a hyperfinite
dimensional approximate solution, and then its standard part is a candidate for a solution.
For the deterministic equations this provides a considerable simplification of the basic
existence result of [4].

(2) For the stochastic equations, a rich space is needed especially in dimension d =
3. The hyperfinite dimensional stochastic equations are again ”easily” solvable, with an
internal adapted space carrying the solution. The standard part of this is carried on the
corresponding adapted Loeb space, and it is a solution to the stochastic equations above.
These are the first known solutions for the case of multiplicative noise. The solutions
display more regularity in the 2D case.
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