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Abstract. We investigate a homogenization problem related to a non-local interface energy with a
periodic forcing term. We show the existence of planelike minimizers for such energy.

Moreover, we prove that, under suitable assumptions on the non-local kernel and the external
field, the sequence of rescaled energies Γ-converges to a suitable local anisotropic perimeter, where the
anisotropy is defined as the limit of the normalized energy of a planelike minimizer in larger and larger
cubes (i.e., what is called in jargon “stable norm”).

To obtain this, we also establish several auxiliary results, including: the minimality of the level sets
of the minimizers, explicit bounds on the oscillations of the minimizers, density estimates for almost
minimizers, and non-local perimeter estimates in the large.
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1. Introduction

Planelike minimizers are objects (such as surfaces or interfaces) that minimize a given energy func-
tional and lie at a bounded distance from a hyperplane. They tipically occur in periodic media, where
the energy density repeats periodically in space, allowing for suitable cancellations of the inhomoge-
neous minutiae of the environment that produce stable structures which, albeit not being perfectly
flat, appear as flat at a large scale. In this spirit, planelike minimizers show how a possibly complicated
structure at a fine scale behaves like a simple, averaged object in the large, and this phenomenon in
turn provides an essential building block to understand homogenization.

Moreover, planelike minimizers link the microscopic features of a medium to its macroscopic behav-
ior, often reducing the analysis to that of “effective energies”, called in jargon “stable norms”, which
play the role of homogenized “surface tensions” capturing the effective anisotropy of the medium at a
large scale (see below for further details).

Also, when planelike minimizers possess some geometric organization (such as foliations or lamina-
tions of space), they can help describe the global geometry of minimizers.
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In certain variational settings arising in the theory of dynamical systems (like twist maps or Frenkel-
Kontorova models), planelike minimizers correspond to Aubry-Mather sets, namely to configurations
that minimize action and exhibit periodic and quasi-periodic order (see [Mat82, ALD83, dlLV07]).
In analogy to this, planelike minimizers have been constructed for elliptic functionals and minimal
surfaces (see [Mos86,CdlL01,AB06,dlLV09]), phase transition models and partial differential equations
(see [Val04,NV07,RS11]), fluid jets (see [PV05]), statistical mechanics and spin systems (see [CdlL98,
CDV17]).

In this paper, we investigate a homogenization problem related to a non-local interface energy with
a periodic forcing term, extending the results presented in [CT09] to a non-local setting. Consider-
ing some assumptions on the non-local kernel K and the external field g, we show the existence of
planelike minimizers for such energy, i.e. minimizers that are at bounded distance from a plane (see
Definition 1.11 below). Moreover, we prove that the sequence of rescaled energies {Fε}ε Γ-converges,
as ε approaches 0, to a suitable local anisotropic perimeter Fϕ. The anisotropy ϕ is also known as
“stable norm” (see [CGN14]), and is defined as the limit of the (normalized) energy of a planelike
minimizer in larger and larger cubes.

Adapting some ideas presented in [CdlL01,CT09] to our setting, we construct planelike minimizers
for our energy F via a cell-problem. Then, we show that the stable norm ϕ is well-defined and we
prove the main Γ-convergence result.

Setting and main assumptions. The mathematical framework adopted in this paper goes as fol-
lows. Let Q := (0, 1)n be the n-dimensional cube of side 1, and let g ∈ L∞(Rn) be a Zn-periodic
function such that

(1.1)

∫
Q
g(x) dx = 0.

In all the paper, the following assumptions on the kernel K will be in force.
Suppose1 that, for all x, y, w ∈ Rn, and for any rotation R ∈ SO(n),

(1.2) K(y, x) = K(x, y) = K(x+ w, y + w) = K(Rx,Ry) ⩾ 0,

and

(1.3)

∫
Rn

|h|K(h, 0) dh < +∞.

Namely, we require that the kernel under consideration is non-negative, symmetric, translation and
rotation invariant, and has some integrability properties.

Moreover, we assume that there exist parameters s1 and s2, and positive constants δ, κ1, κ2 and κ3,
such that

0 < s1 <
1

2
< s2 < 1, κ1 ⩽ κ2,

and, for every x, y ∈ Rn,

κ1
χ(0,δ)(|x− y|)
|x− y|n+2s1

⩽ K(x, y) ⩽ κ2min

{
1

|x− y|n+2s1
,

1

|x− y|n+2s2

}
(1.4)

and inf
(x,y)∈Q×Q

K(x, y) ⩾ κ3.(1.5)

Remark 1.1. We point out that, in light of (1.2), the lower bound in (1.5) is equivalent to

(1.6) K(x, y) ⩾ κ3χ(0,
√
n)(|x− y|), for all (x, y) ∈ Rn × Rn.

Indeed, for every x, y ∈ Q, we have that |x− y| ⩽ diam(Q) =
√
n. Thus, (1.6) yields (1.5).

Moreover, for every x, y ∈ Rn such that |x− y| <
√
n, we have that x− y ∈ Q. Hence, from (1.2)

and (1.5), we infer that

K(x, y) = K(x− y, 0) ⩾ inf
(w,z)∈Q×Q

K(w, z) ⩾ κ3,

which entails (1.6).
We also point out that if the lower bound in (1.4) holds true with δ ⩾

√
n, then (1.5) and (1.6) are

always verified with κ3 := κ1δ
−n−2s1 .

1Hypotheses (1.2) and (1.3) are very natural assumptions to work with. Compare for instance with [AB98b, Para-
graph 1.2].
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As model cases of kernels that satisfy (1.2), (1.3), (1.4), and (1.5), one can think about

K1(x, y) :=
χ(0,

√
n)(|x− y|)

|x− y|n+2s
,

K2(x, y) :=
χ(0,δ)(|x− y|)
|x− y|n+2s

+ χ[δ,+∞)(|x− y|)e−|x−y|,

and K3(x, y) :=
χ(0,δ)(|x− y|)
|x− y|n+2s

+
χ[δ,+∞)(|x− y|)
|x− y|n+2S

,

with 0 < s < 1
2 < S < 1.

Remark 1.2. We point out that (1.4) entails

K(x, y) ⩽
κ2

|x− y|n+2s2
, for all (x, y) ∈ Rn × Rn.

Hence, K is integrable at infinity (when x and y are very far apart). As we will see, this condition
yields a local energy in the Γ-limit.

From now on, we will call a domain any open and bounded set, not necessarily connected.
For our purposes, we now recall the notion of K-nonlocal interaction between disjoint sets A,

B ⊆ Rn, that is

LK(A,B) :=

∫∫
A×B

K(x, y) dx dy,

and the notion of K-nonlocal perimeter of a set E ⊆ Rn with respect to a Lipschitz domain Ω ⊆ Rn

(see Definition C.1 for the precise notion set with Lipschitz boundary), which is defined as

PK(E,Ω) :=

∫∫
Ω♯

1

2
|χE(x)− χE(y)|K(x, y) dx dy

= LK(Ω ∩ E,Ω ∩ Ec) + LK(Ω ∩ E,Ωc ∩ Ec) + LK(Ωc ∩ E,Ω ∩ Ec),

where

Ω♯ := (Ω× Ω) ∪ (Ωc × Ω) ∪ (Ω× Ωc),

with Ωc := Rn \ Ω.
We will also use the notation

PK(E) := LK(E,Ec).

Moreover, we define the energy functional J in Ω as the perturbation of PK with the periodic
external forcing term g, given by

J (E,Ω) := PK(E,Ω) +

∫
E∩Ω

g(x) dx.

However, taking into account the periodicity of g, in order to account for the energy contributions
of ∂Ω, we will also consider the energy functional F defined as

(1.7) F (E,Ω) := PK(E,Ω) +

∫
E∩Q(Ω)1

g(x) dx,

where

Q(Ω)1 := {k +Q s.t. k ∈ Zn, k +Q ⊆ Ω}.

Construction of planelike minimizers. To construct minimizers for J and F , given p ∈ Rn, we
define

Ep(u) :=
∫∫

Q×Rn

1

2
|u(x)− u(y) + p · (x− y)|K(x, y) dx dy +

∫
Q
g(x)u(x) dx.

Then, we will address the cell problem:

find up ∈ W :=

{
u ∈ L1

loc(Rn) s.t. u is Zn-periodic and

∫
Q
u(x) dx = 0

}
such that Ep(up) = min

W
Ep.

(1.8)
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Remark 1.3. We stress that the choice of the domain of integration in the definition of Ep is tailored
so that the energy functional under consideration is additive with respect to unions of disjoint sets
(compare Q× Rn with Q♯ and Q×Q).

Moreover, this choice of Ep is the right one for deriving the desired Euler–Lagrange equation (see
Corollary 3.2) and for constructing (class-A) minimizers of J .

The problem in (1.8) is well-defined, according to the following result:

Theorem 1.4 (Existence of minimizers for Ep). Let K : Rn × Rn → R satisfy (1.2), (1.3), (1.4),
and (1.5).

Then, there exists γ > 0, depending only on n, κ1, δ, and s1, such that, if ∥g∥
L

n
2s1 (Q)

⩽ γ, there

exists u ∈ W such that

Ep(u) = min
W

Ep(1.9)

and u ∈ L
n

n−2s1 (Q).(1.10)

A key step to find minimizers for J is the following integral condition for minimizers up constructed
in Theorem 1.4.

Proposition 1.5. Let K : Rn × Rn → R satisfy (1.2), (1.3), (1.4), and (1.5) and let up be the
minimizer for Ep in W given by Theorem 1.4.

Then, there exists z : Rn × Rn → [−1, 1] such that, for all η ∈ C∞(Rn) that are Zn-periodic, we
have that

(1.11)

∫∫
Q×Rn

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy +

∫
Q
g(x) η(x) dx = 0.

Moreover, for a.e. (x, y) ∈ Rn × Rn and for all k ∈ Zn,

up(x)− up(y) + p · (x− y) = z(x, y)
∣∣up(x)− up(y) + p · (x− y)

∣∣,(1.12)

z(x, y) = −z(y, x),(1.13)

and z(x+ k, y + k) = z(x, y).(1.14)

A proof of Theorem 1.4 will be presented in Section 2, while Section 3 is devoted to showing
Proposition 1.5.

We utilize the function z constructed in Proposition 1.5 as a “calibration” to show that the level
sets of the minimizers provided by Theorem 1.4 are in turn (class-A) minimizers of our geometric
problem.

As a counterpart of the classical theory of minimal surfaces, and in the wake of [Pag20,Cab20], one
can define calibrations in our setting as follows:

Definition 1.6. Let E ⊆ Rn be a set of finite K-perimeter. We say that a function z : Rn ×Rn → R
is a calibration for E in Ω if

PK(E,Ω) =

∫∫
Ω♯

1

2
z(x, y) (χE(x)− χE(y))K(x, y) dx dy.

By analogy with the notation introduced in [CdlL01], we also give the following definition of mini-
mality for J .

Definition 1.7. We say that a set E ⊆ Rn is a class-A minimizer for J if, for any domain Ω ⊆ Rn,
we have that

J (E,Ω) ⩽ J (F,Ω), for any F such that F \ Ω = E \ Ω.

Remark 1.8. Observe that if E is a class-A minimizer for J , then, for any Lipschitz domain Ω, it
holds that

F (E,Ω) ⩽ F (F,Ω),

for every F ⊆ Rn such that F \ Q(Ω)1 = E \ Q(Ω)1.
Indeed, by the properties of PK , for any A and B subsets of Rn such that A∆B ⊂ Q(Ω)1, we have

that

PK(A,Ω)− PK(B,Ω) = PK(A,Q(Ω)1)− PK(B,Q(Ω)1).

HTTPS://RESEARCH-REPOSITORY.UWA.EDU.AU/EN/PERSONS/SERENA-DIPIERRO
HTTPS://RESEARCH-REPOSITORY.UWA.EDU.AU/EN/PERSONS/ENRICO-VALDINOCI


NON-LOCAL PLANELIKE MINIMIZERS 5

Alternatively, observe that if F \ Q(Ω)1 = E \ Q(Ω)1, then in particular F \ Ω = E \ Ω and∫
E∩Ω

g(x) dx−
∫
F∩Ω

g(x) dx =

∫
E∩Q(Ω)1

g(x) dx−
∫
F∩Q(Ω)1

g(x) dx.

For the rest of our discussion, we adopt the short notation

(1.15) vp(x) := up(x) + p · x

and define, for any t ∈ R,

(1.16) Ep,t :=
{
x ∈ Rn s.t. vp(x) > t

}
.

Then, we have the following result:

Theorem 1.9 (Minimality of level sets). Let K : Rn × Rn → R satisfy (1.2), (1.3), (1.4), and (1.5)
and let up be a minimizer for Ep in W. Let also vp and Ep,t be as in (1.15) and (1.16), respectively.

Then, for every t ∈ R, the set Ep,t is a class-A minimizer for J in the sense of Definition 1.7.

A proof of Theorem 1.9 can be found in Section 4. The idea is to first prove a weaker version of
Theorem 1.9, in which the conclusion holds for a.e. t ∈ R only. Then, exploiting the closedness of
class-A minimizers with respect to the L1

loc-convergence, we will obtain the desired result.

Thanks to suitable density estimates (see Proposition 5.1 below), we also infer that a minimizer up
of Ep has controlled oscillations in Q. To this end, we recall that, for any φ ∈ BV(Q),

osc
Q
(φ) := ess sup

Q
φ− ess inf

Q
φ.

Theorem 1.10 (Minimizers of Ep have controlled oscillations). Let K : Rn × Rn → R satisfy (1.2),
(1.3), (1.4), and (1.5) and let up be a minimizer for Ep in W.

Let also vp be as (1.15).
Then, there exists a constant c > 0 independent of p such that

osc
Q
(vp) ⩽ c|p| and osc

Q
(up) ⩽ (c+

√
n)|p|.

As a consequence of Theorem 1.10, we obtain that the collection of level sets {Ep,t}t∈Tp , where

Tp := {t ∈ R s.t. ∂Ep,t ∩Q ̸= ∅},

can be trapped within a strip of height M , for some M > 0 independent of t and p. For this reason,
we call such level sets “planelike”, according to the setting below.

Definition 1.11. Let p ∈ R\{0} and let E ⊆ Rn be a class-A minimizer for the energy functional J .
We say that E is a planelike minimizer for J in direction p/|p| if there exists M > 0 (independent

of p) such that

either {x ∈ Rn s.t. x · p ⩽ −M |p|} ⊆ E ⊆ {x ∈ Rn s.t. x · p ⩽M |p|}
or {x ∈ Rn s.t. x · p ⩾M |p|} ⊆ E ⊆ {x ∈ Rn s.t. x · p ⩾ −M |p|}.

In both cases, it also holds

∂E ⊆ {x ∈ Rn s.t. |x · p| ⩽M |p|}.

Corollary 1.12 (Level sets are planelike minimizers). Let p ∈ Rn and let K : Rn × Rn → R sat-
isfy (1.2), (1.3), (1.4), and (1.5). Let up be a minimizer for Ep in W and let also vp be as in (1.15),
t ∈ R and Ep,t be defined as in (1.16).

If t ∈ Tp, then Ep,t is a planelike minimizer in direction p/|p| in the sense of Definition 1.11.
Namely, there exists M > 0 independent of p and t such that

Ep,t ⊆ {x ∈ Rn s.t. x · p ⩾ −M |p|}(1.17)

and {x ∈ Rn s.t. x · p ⩾M |p|} ⊆ Ep,t.(1.18)

In particular, it holds

∂Ep,t ⊆ {x ∈ Rn s.t. |x · p| ⩽M |p|}.

Section 5 is committed to showing the density estimates needed for Theorem 1.10, while a proof of
the latter and Corollary 1.12 is contained in Section 6.
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Γ-convergence results and the stable norm. With the planelike minimizers of Corollary 1.12, we
are able to prove the main result of this paper, which is the Γ-convergence of a sequence of rescaled
energies to the so-called stable norm.

Let Ω ⊆ Rn be a Lipschitz domain and let, for any ε > 0,

Q(Ω)ε := {ε(k +Q) s.t. k ∈ Zn, ε(k +Q) ⊆ Ω}.

Then, for any set E, we define the rescaled energy Fε in Ω as

Fε(E,Ω) :=

∫∫
Ω♯

1

2
|χE(x)− χE(y)|Kε(x, y) dx dy +

∫
Q(Ω)ε∩E

gε(x) dx

= PKε(E,Ω) +

∫
Q(Ω)ε∩E

gε(x) dx,

(1.19)

where

Kε(x, y) :=
1

εn+1
K
(x
ε
,
y

ε

)
and gε(x) :=

1

ε
g
(x
ε

)
.

For later convenience, we also set

Eε(E,Ω) := Fε(E,Ω)− LKε(E ∩ Ω, Ec ∩ Ωc)

=

∫∫
Ω×Rn

χE(x)χEc(y)Kε(x, y) dx dy +

∫
Q(Ω)ε∩E

gε(x) dx.
(1.20)

We will show that the sequence {Fε}ε>0 Γ-converges to a local anisotropic perimeter.
To this end, let p ∈ Sn−1 and let Qp be a cube of side 1 with a face perpendicular to p. Moreover,

let Ep be a planelike minimizer for J . Then, in the wake of [CGN14], we define the stable norm ϕ :
Sn−1 → R as

ϕ(p) := lim
ε→0+

Fε(εEp, Q
p) = lim

R→+∞
R1−nF1(Ep, Q

p
R),(1.21)

whenever such limit exists. Here, we are adopting the notation Qp
R for the cube of side R with a face

perpendicular to p.
Besides, for any set E ⊆ Ω of finite perimeter, we define

(1.22) Fϕ(E,Ω) :=

∫
∂E∩Ω

ϕ(νE(x))dHn−1(x).

Then, the following holds true:

Theorem 1.13 (Γ-convergence of the energies Fε). We have that Fε
Γ−→ Fϕ, as ε → 0, with respect

to the L1
loc(Rn)-convergence of sets. Namely, for every set E ⊆ Rn, we have that

(i) for any sequence of sets {Eε}ε such that Eε → E in L1
loc(Rn) (i.e. |Eε∆E| → 0 as ε→ 0),

(1.23) lim inf
ε→0

Fε(Eε,Ω) ⩾ Fϕ(E,Ω);

(ii) there exists a sequence of sets {Eε}ε such that Eε → E in L1
loc(Rn) and

(1.24) lim sup
ε→0

Fε(Eε,Ω) ⩽ Fϕ(E,Ω).

Some preliminary results needed for Theorem 1.13 can be found in Section 7, while we will present
some properties of ϕ such as well-definedness in Section 8 and continuity in Section 10. Then, Sections 9
and 11 are devoted to proving Theorem 1.13-(i) and Theorem 1.13-(ii) respectively.

We stress that Proposition 7.3 in Section 7 entails that the energy F1 is non-negative in every large
domain. However, there is no Poincaré Inequality available for generic non-local kernels as the ones
considered by our2 setting. Thus, given a sequence of sets {Eε}ε with supε Fε(Eε,Ω) < +∞, to the
best of our knowledge, Proposition 7.3 does not provide any useful uniform bound either on the BV -
norm ∥χEε∥BV (Ω), or on any Gagliardo seminorm [χEε ]W s,p(Ω) (compare with [CT09, Remark 2.2]).
For this reason, it remains an open question whether a compactness result holds for sequences of sets
with uniformly bounded energy.

2Check [CN18, Proposition 4.1] for a Poincaré Inequality for a non-local kernel K under some additional assumptions.
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Complementary results. Additionally, we state and prove in the appendices of this work a few
interesting results concerning some uniform density estimates for almost minimizers (defined in a
suitable sense, to be compared with [DVV, Definition 1.1]) of PK and the behavior of our non-local
perimeter in large balls (i.e. in BR, with R→ +∞).

Comparison with the existing literature. In relation with the existing literature for the non-local
setting, we recall that problems entangled with phase-transition, both at the macro-scale and at the
meso-scale, have been addressed in [AB98a,AB98b] and [Pag17], respectively. However, our setting
is quite different, since in [AB98a,AB98b] the authors only consider a model with no external fields,
while in [Pag17] no Γ-convergence results have been investigated. Moreover, we drop the presence of
the double-well potential, that is peculiar of the Allen-Cahn model.

In our setting, we have to face two main difficulties. First, we observe that the forcing term g
requires a careful treatment. Indeed, even though the energy contribution of g does not need to be
positive, we still have to guarantee that the energies Fε eventually are. Moreover, we want to avoid
the contribution due to g near the boundary of the domain.

The second main concern is that, since the kernel K accounts for long-range interactions, we will
need specific assumptions to ensure that K “localizes in the limit”. In fact, on the one hand, to have a
well-defined stable norm ϕ, we need that the “volume term” measured by K and the contribution due
to g scale compatibly. On the other hand, we want to avoid an infinite energy contribution coming
from outside the domain.

Further developments. A possible further research direction could be investigating the existence
of class-A minimizers for J under a mass constraint. Suppose that such minimizers exist and
let {Em}m>0 be a sequence of class-A minimizers for J such that |Em| = m. Then, in the fashion of
the classical case, it is reasonable to expect that a suitable rescaling of Em converges, as m → +∞,
to the Wulff shape (i.e. the isoperimetric set) for Pϕ.

As another further development of this work, we point out that it would be interesting to investigate
the differentiability of the stable norm. We refer to [AB06] for the analogous in the classical case on
manifolds. See also [CGN14] for a different approach using the local version of the cell problem (1.8).

Finally, it would be interesting to determine whether it is possible to prove the existence of plane-
like minimizers when the kernel K is integrable (dropping the lower bound in (1.4)). For instance,
in [DLNP21], the authors have proved that a suitable rescaling of the fractional perimeter Pers Γ-
converges, as s → 0, to an integral operator with an L1 kernel, now commonly referred to as 0-
Perimeter. However, addressing this problem goes beyond the purpose of this paper.

2. Existence of minimizers for Ep - Proof of Theorem 1.4

The first step to construct planelike minimizers for the energy functional J is to prove that the cell
problem (1.8) is well-defined, as stated in Theorem 1.4.

To do this, we observe that

Ep(0) =
∫∫

Q×Rn

1

2
|p · (x− y)|K(x, y) dx dy ⩽

|p|
2

∫∫
Q×Rn

|x− y|K(x, y) dx dy

=
|p| |Q|

2

∫
Rn

|h|K(h, 0) dh < +∞,

thanks to (1.2) and (1.3). Hence, the minimization process takes place on a nonempty set of competi-
tors.

Accordingly, we take a minimizing sequence uj ∈ W with Ep(uj) ⩽ Ep(0). Thus, using (1.4), the

fact that g ∈ L∞(Rn) ⊆ L
n

2s1 (Q), and the Hölder inequality, we obtain

Ep(0) ⩾
∫∫

Q×Rn

1

2
|uj(x)− uj(y)|K(x, y) dx dy −

∫∫
Q×Rn

1

2
|p · (x− y)|K(x, y) dx dy

−
∫
Q
|g(x)| |uj(x)| dx

⩾
κ1
2

∫
(Q×Rn)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy − Ep(0)− ∥g∥
L

n
2s1 (Q)

∥uj∥
L

n
n−2s1 (Q)

.

(2.1)
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Also, by the fractional Poincaré inequality (see e.g. [Leo23, Theorem 6.33]),

(2.2) ∥uj∥L1(Q) ⩽ C

∫∫
Q×Q

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy

and, thanks to the fractional Sobolev inequality (see e.g. [DNPV12, Theorem 6.7]),

(2.3) ∥uj∥
L

n
n−2s1 (Q)

⩽ C

(
∥uj∥L1(Q) +

∫∫
Q×Q

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy

)
,

for some constant C > 0 depending only on n and s1 and possibly changing from line to line.
Combining (2.2) and (2.3), we infer that

∥uj∥
L

n
n−2s1 (Q)

⩽ C

∫∫
Q×Q

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy.

This, together with Lemma A.1, gives that

∥uj∥
L

n
n−2s1 (Q)

⩽ C

∫∫
(Q×Q)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy

⩽ C

∫
(Q×Rn)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy,

up to renaming C > 0, in dependence only of δ, n, and s1.
Therefore, plugging the latter inequality into (2.1), we deduce that

κ1
4

∫
(Q×Rn)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy

⩽

(
κ1
2

− C∥g∥
L

n
2s1 (Q)

)∫
(Q×Rn)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s1

dx dy ⩽ 2Ep(0),
(2.4)

as long as ∥g∥
L

n
2s1 (Q)

⩽ κ1
4C .

Lemma A.1, (2.2), and (2.4) provide a uniform bound for uj in W s1,1(Q). Accordingly, by (2.3),

the sequence {uj}j is also bounded in L
n

n−2s1 (Q), and hence precompact in L1(Q) (see e.g. [DNPV12,
Theorem 7.1]). It thereby follows that, up to a subsequence, the sequence {uj}j converges to some u
in L1(Q) and, by periodicity, a.e. in Rn. In particular, we have that u ∈ W.

Now, by construction, and thanks to the Fatou Lemma, we have that

inf
W
Ep = lim

j→+∞
Ep(uj)

⩾
∫∫

Q×Rn

1

2
|u(x)− u(y) + p · (x− y)|K(x, y) dx dy + lim

j→+∞

∫
Q
g(x)uj(x) dx.

(2.5)

Notice also that, again by the Fatou Lemma,

(2.6) S := sup
j∈N

∥uj∥
L

n
n−2s1 (Q)

⩾ lim
j→+∞

∥uj∥
L

n
n−2s1 (Q)

⩾ ∥u∥
L

n
n−2s1 (Q)

.

Moreover, given ε > 0, using the absolute continuity of the Lebesgue integral (see e.g. [Fol99,
Corollary 3.6]), we find η > 0 such that, whenever a subset V of Q has measure less than η, we have
that

(2.7) ∥g∥
L

n
2s1 (V )

⩽ ε.

At this stage, we invoke the Severini-Egorov Theorem (see e.g. [Fol99, Theorem 2.33]) to find a
set U ⊆ Q of measure less than η such that uj converges to u uniformly in Q \ U . As a result, we
come to

lim
j→+∞

∣∣∣∣∫
Q
g(x)

(
uj(x)− u(x)

)
dx

∣∣∣∣ = lim
j→+∞

∣∣∣∣∫
U
g(x)

(
uj(x)− u(x)

)
dx

∣∣∣∣
⩽ lim

j→+∞

(
∥uj∥

L
n

n−2s1 (U)
+ ∥u∥

L
n

n−2s1 (U)

)
∥g∥

L
n

2s1 (U)
⩽ 2S∥g∥

L
n

2s1 (U)
.
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From this and (2.7), we infer that

lim
j→+∞

∣∣∣∣∫
Q
g(x)

(
uj(x)− u(x)

)
dx

∣∣∣∣ ⩽ ε.

By the arbitrariness of ε, we find that

lim
j→+∞

∫
Q
g(x)

(
uj(x)− u(x)

)
dx = 0.

Plugging this information into (2.5), we obtain that

inf
W
Ep ⩾

∫∫
Q×Rn

|u(x)− u(y) + p · (x− y)|K(x, y) dx dy +

∫
Q
g(x)u(x) dx = Ep(u),

showing that u is a minimizer (i.e. (1.9)). The statement in (1.10) is a consequence of (2.6).

Remark 2.1. We point out that, by inspection of the proofs of Theorem 1.4 and Lemma A.1, we
infer that

∥g∥
L

n
2s1 (Q)

⩽
κ1
4C

⩽ c̃ δn+2s1φ(δ),

where κ1, s1, and δ are as in (1.4), C is a multiple of the constant appearing in Lemma A.1, c̃ =
c̃(n, s1, κ1) is a positive constant, and φ is a function such that

lim
δ→0+

φ(δ) = 0.

3. Proof of Proposition 1.5 and Euler-Lagrange equation for the cell problem (1.8)

Here, we present the proof of Proposition 1.5.

Proof of Proposition 1.5. We first show (1.11) for every η ∈ C∞(Rn) that is Zn-periodic, and such
that

∫
Q η(x) dx = 0. Let us consider

X :=

{
u ∈ L

n
n−2s1 (Q) s.t. u is Zn-periodic,

∫
Q
u(x) dx = 0,

and

∫∫
Q×Rn

1

2
|u(x)− u(y)|K(x, y) dx dy < +∞

}
.

For any u ∈ X , in the spirit of [MRT16, Theorem 2.3] (see also [MRT19a,MRT19b,BDL+23,NO23]),
we define the subdifferential of Ep at u as the collection of all φ ∈ X satisfying

(3.1) Ep(w)− Ep(u) ⩾
∫
Q

(
w(x)− u(x)

)
φ(x) dx, for all w ∈ X ,

and we denote it by ∂Ep(u).
Now, given a minimizer up for Ep (as constructed in Theorem 1.4), let us define a function z :

Rn × Rn → R as

(3.2) z(x, y) :=


up(x)− up(y) + p · (x− y)

|up(x)− up(y) + p · (x− y)|
, if up(x)− up(y) + p · (x− y) ̸= 0,

0, otherwise.

We have that

(3.3) |up(x)− up(y) + p · (x− y)| z(x, y) = up(x)− up(y) + p · (x− y),

namely (1.12) holds true.
Also,

z(x, y) = −z(y, x) ∈ [−1, 1] for a.e. (x, y) ∈ Rn × Rn,

and z(x+ k, y + k) = z(x, y) for all k ∈ Zn,

that are (1.13) and (1.14), respectively.



10 SERENA DIPIERRO, MATTEO NOVAGA, ENRICO VALDINOCI, AND RICCARDO VILLA

Now, we claim that, for all φ ∈ ∂Ep(up) and η ∈ X ∩ C∞(Rn), the function z satisfies

(3.4)

∫∫
Q×Rn

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy +

∫
Q
g(x) η(x) dx =

∫
Q
φ(x) η(x) dx.

To check this, we recall the notation for vp in (1.15) and we stress that, by (3.3),

|vp(x)− vp(y)| z(x, y) = vp(x)− vp(y).

Now, let ε ∈ (−1, 1)\{0} and w := up+εη. Notice that w ∈ X , since both up and η are (recall (1.10)
in Theorem 1.4), therefore we can employ (3.1) with u := up and w as above and we obtain that

ε

∫
Q
φ(x) η(x) dx− ε

∫
Q
g(x) η(x) dx

⩽
∫∫

Q×Rn

1

2

(
|vp(x)− vp(y) + ε(η(x)− η(y))| − |vp(x)− vp(y)|

)
K(x, y) dx dy

=

∫∫
Q×Rn

1

2

(∣∣|vp(x)− vp(y)|z(x, y) + ε(η(x)− η(y))
∣∣− |vp(x)− vp(y)|

)
K(x, y) dx dy

=

∫∫
Q×Rn

1

2

(∫ 1

0

d

dt

∣∣∣|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))
∣∣∣ dt) K(x, y) dx dy

=

∫∫
Q×Rn

1

2

∫ 1

0
ε

(
|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))

)
(η(x)− η(y))∣∣∣|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))

∣∣∣ dt

 K(x, y) dx dy.

(3.5)

In addition, for all t ∈ [0, 1],∣∣∣∣∣∣
(
|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))

)
(η(x)− η(y))∣∣∣|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))

∣∣∣
∣∣∣∣∣∣

⩽ |η(x)− η(y)| ⩽ 2∥η∥C1(Rn)min{|x− y|, 1}.

(3.6)

On this account, dividing by ε in (3.5) and discussing the sign of ε, thanks to the Dominated Conver-
gence Theorem (whose application is justified by (1.3) and (3.6)), we deduce that∫

Q
φ(x) η(x) dx−

∫
Q
g(x) η(x) dx

= lim
ε→0

∫∫
Q×Rn

1

2

∫ 1

0

(
|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))

)
(η(x)− η(y))∣∣∣|vp(x)− vp(y)|z(x, y) + tε(η(x)− η(y))

∣∣∣ dt

 K(x, y) dx dy

=

∫∫
Q×Rn

1

2

(∫ 1

0

|vp(x)− vp(y)|z(x, y)(η(x)− η(y))

|vp(x)− vp(y)|
dt

)
K(x, y) dx dy

=

∫∫
Q×Rn

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy,

showing (3.4).
Now, by the minimality of up, for all w ∈ X ⊆ W, we have that Ep(w) − Ep(u) ⩾ 0, which entails

that 0 ∈ ∂Ep(up). Hence, employing (3.4) with φ ≡ 0 yields (1.11) for every η ∈ C∞(Rn) that
is Zn-periodic, and such that

∫
Q η(x) dx = 0.

Let now η ∈ C∞(Rn) be Zn-periodic, and define

η̃(x) := η(x)−
∫
Q
η(y) dy.

In particular, η̃ ∈ C∞(Rn) ∩ X and (1.11) holds true for η̃.
Therefore, taking advantage of (1.1) and the definition of η̃, we infer that∫∫

Q×Rn

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy +

∫
Q
g(x) η(x) dx

=

∫∫
Q×Rn

1

2
z(x, y)(η̃(x)− η̃(y))K(x, y) dx dy +

∫
Q
g(x) η̃(x) dx = 0.
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concluding the proof. □

By a direct computation, from Proposition 1.5, we also obtain the following:

Corollary 3.1. Let K : Rn×Rn → R satisfy (1.2), (1.3), (1.4), and (1.5) and let up be the minimizer
for Ep in W given by Theorem 1.4. Let also z : Rn × Rn → [−1, 1] be as in Proposition 1.5.

Then, for all η ∈ C∞(Rn) that are Zn-periodic, we have that∫∫
Q×Q

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy

+

∫∫
Q×Qc

z(x, y)η(x)K(x, y) dx dy +

∫
Q
g(x) η(x) dx = 0.

(3.7)

Proof. Let η ∈ C∞(Rn) be Zn-periodic. Observe that (3.7) will follow from (1.11) if we show that∫∫
Q×Rn

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy

=

∫∫
Q×Q

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy +

∫∫
Q×Qc

z(x, y)η(x)K(x, y) dx dy,

that is, if we show that

(3.8)

∫∫
Q×Qc

z(x, y)η(y)K(x, y) dx dy = −
∫∫

Q×Qc

z(x, y)η(x)K(x, y) dx dy.

To achieve this, notice that Qc =
⋃

j∈Zn\{0} j +Q. Moreover, according to [CN18, Remark 2.1], we

have that ∫∫
Q×Qc

|z(x, y)η(y)K(x, y)| dx dy ⩽ ∥η∥L∞(Q) PK(Q) < +∞

Thus, using Fubini-Tonelli’s Theorem together with the periodicity of η, z, andK (see (1.14) and (1.2)),
we obtain∫∫

Q×Qc

z(x, y)η(y)K(x, y) dx dy =
∑

j∈Zn\{0}

∫∫
Q×(j+Q)

z(x, y)η(y)K(x, y) dx dy

=
∑

j∈Zn\{0}

∫∫
(Q−j)×Q

z(x, y)η(y)K(x, y) dx dy =

∫∫
Qc×Q

z(x, y)η(y)K(x, y) dx dy

=

∫∫
Q×Qc

z(y, x)η(x)K(y, x) dx dy = −
∫∫

Q×Qc

z(x, y)η(x)K(x, y) dx dy,

where we have also used (1.13) and the symmetry of K to obtain the last equality. This shows (3.8),
concluding the proof. □

As a byproduct of Corollary 3.1, we deduce the Euler-Lagrange equation for the cell problem (1.8).

Corollary 3.2 (Euler-Lagrange equation for the cell problem (1.8)). Let K : Rn × Rn → R sat-
isfy (1.2), (1.3), (1.4), and (1.5). Let also z : Rn × Rn → [−1, 1] be as in Proposition 1.5.

Then, for every η ∈ C∞
c (Rn), we have that

(3.9)

∫∫
Rn×Rn

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy +

∫
Rn

g(x) η(x) dx = 0.

Proof. We use the notation Q(j) := kj +Q, for some kj ∈ Zn and we first claim that

(3.10) formula (3.9) holds true for η ∈ C∞
c (Q(j)).

To do this, we extend η periodically in Rn and we call this new function η̃.
Taking advantage of the periodicity of η̃, z, and K, we obtain∫∫

Q(j)×Q(j)

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy +

∫∫
Q(j)×(Q(j))c

z(x, y)η(x)K(x, y) dx dy

=

∫∫
Q(j)×Q(j)

1

2
z(x, y)(η̃(x)− η̃(y))K(x, y) dx dy +

∫∫
Q(j)×(Q(j))c

z(x, y)η̃(x)K(x, y) dx dy

=

∫∫
Q×Q

1

2
z(x, y)(η̃(x)− η̃(y))K(x, y) dx dy +

∫∫
Q×Qc

z(x, y)η̃(x)K(x, y) dx dy.

(3.11)
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Besides, from the periodicity of η̃ and g, we deduce that

(3.12)

∫
Q(j)

g(x) η(x) dx =

∫
Q(j)

g(x) η̃(x) dx =

∫
Q
g(x) η̃(x) dx.

Therefore, using (3.7) with η := η̃, (3.11), and (3.12), we infer that∫∫
Q(j)×Q(j)

1

2
z(x, y)(η(x)− η(y))K(x, y) dx dy

+

∫∫
Q(j)×(Q(j))

c
z(x, y)η(x)K(x, y) dx dy +

∫
Q(j)

g(x) η(x) dx = 0.
(3.13)

Now, recall that

(Q(j))♯ = (Rn × Rn) \
(
(Q(j))c × (Q(j))c

)
.

Thus, since supp(η) ⋐ Q(j), (3.13) entails that∫∫
Rn×Rn

1

2
z(x, y) (η(x)− η(y)) K(x, y) dx dy +

∫
Rn

g(x) η(x) dx

=

∫∫
(Q(j))♯

1

2
z(x, y) (η(x)− η(y)) K(x, y) dx dy +

∫
Q(j)

g(x) η(x) dx

=

∫∫
Q(j)×Q(j)

1

2
z(x, y) (η(x)− η(y)) K(x, y) dx dy

+

∫∫
Q(j)×(Q(j))c

z(x, y)η(x)K(x, y) dx dy +

∫
Q(j)

g(x) η(x) dx

= 0,

where we have also used (1.13) to obtain the second equality. This establishes the claim in (3.10).
Let now η ∈ C∞

c (Rn) with supp(η) ⋐ Ω, for some domain Ω ⊆ Rn, and consider a finite covering

of Ω made of unit cubes Q(1), . . . , Q(N), with Q(j) = kj +Q, for some kj ∈ Zn.
Let also ξm be a sequence of functions in C∞

c (Q, [0, 1]) such that ξm → χQ (pointwise), asm→ +∞.
We set

ηm,j(x) := η(x)ξm(x− kj)

and observe that

(3.14) ηm,j ∈ C∞
c (Q(j)).

Moreover, for all x ∈ Rn,

η(x) = η(x)
N∑
j=1

χQ(j)(x) = η(x)
N∑
j=1

χQ(x− kj)

= lim
m→+∞

η(x)

N∑
j=1

ξm(x− kj) = lim
m→+∞

N∑
j=1

ηm,j(x).

(3.15)

In light of (3.14) and (3.10), we can employ (3.9) with η := ηm,j , obtaining that

(3.16)

∫∫
Rn×Rn

1

2
z(x, y) (ηm,j(x)− ηm,j(y)) K(x, y) dx dy +

∫
Rn

g(x) ηm,j(x) dx = 0.

Therefore, recalling (3.15), we sum (3.16) over j and pass to the limit as m → +∞ (using the
Dominated Convergence Theorem) to obtain the desired result. □

4. Minimality of level sets - Proof of Theorem 1.9

This section is committed to the proof of Theorem 1.9. Our strategy goes as follows: we first prove
a weaker version of Theorem 1.9, in which the conclusion holds only for a.e. t ∈ R, then we conclude
thanks to the closedness of class-A minimizers with respect to the L1

loc-convergence. Therefore, we
now focus on showing the following:

Proposition 4.1. Let K : Rn×Rn → R satisfy (1.2), (1.3), (1.4), and (1.5) and let up be a minimizer
for Ep in W. Let also vp and Ep,t be as in (1.15) and (1.16), respectively.

Then, for a.e. t ∈ R, the set Ep,t is a class-A minimizer for J in the sense of Definition 1.7.
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Our argument relies on the following technical results:

Lemma 4.2. Let K : Rn × Rn → R satisfy (1.3) and (1.4).
Then, for every set E, we have that

PK(E,Ω) < +∞.

Proof. Thanks to the assumptions on K in (1.3) and (1.4), we have that

PK(E,Ω) =

∫∫
Ω♯

1

2
|χE(x)− χE(y)|K(x, y) dx dy =

∫∫
Ω♯

χE(x)χEc(y)K(x, y) dx dy

=

∫∫
Ω♯∩{|x−y|<δ}

χE(x)χEc(y)K(x, y) dx dy +

∫∫
Ω♯∩{|x−y|⩾δ}

χE(x)χEc(y)K(x, y) dx dy

⩽
∫∫

Ω♯

κ2χE(x)χEc(y)

|x− y|n+2s1
dx dy +

2

δ

∫∫
Ω×Rn

|x− y|K(x, y) dx dy

⩽
∫∫

E×Ec

κ2
|x− y|n+2s1

dx dy +
2|Ω|
δ

∫
Rn

|h|K(h, 0) dh

< +∞,

as desired. □

Lemma 4.3. Let K : Rn × Rn → R satisfy (1.3) and (1.4) and let up be a minimizer for Ep in W.
Let also vp and Ep,t be as in (1.15) and (1.16), respectively.

Then, for a.e. t ∈ R,

(4.1) PK(Ep,t,Ω) =

∫∫
Ω♯

1

2
z(x, y)

(
χEp,t(x)− χEp,t(y)

)
K(x, y) dx dy < +∞.

Proof. First, observe that, thanks to Lemma 4.2,

PK(Ep,t,Ω) < +∞.

Now, by the layer cake representation (or by direct inspection of the integrals), for any function f ,
we have that

f(x)− f(y) =

∫ +∞

−∞

(
χ{f>t}(x)− χ{f>t}(y)

)
dt,

as well as

|f(x)− f(y)| =
∫ +∞

−∞

∣∣∣χ{f>t}(x)− χ{f>t}(y)
∣∣∣ dt.

Thus, by virtue of (1.12), we come to

z(x, y)

∫ +∞

−∞

(
χEp,t(x)− χEp,t(y)

)
dt = z(x, y)

∫ +∞

−∞

(
χ{vp>t}(x)− χ{vp>t}(y)

)
dt

= z(x, y)
(
vp(x)− vp(y)

)
=
∣∣vp(x)− vp(y)

∣∣
=

∫ +∞

−∞

∣∣∣χ{vp>t}(x)− χ{vp>t}(y)
∣∣∣ dt

=

∫ +∞

−∞

∣∣∣χEp,t(x)− χEp,t(y)
∣∣∣ dt.

(4.2)

Let us introduce the short notation

Υ(t) :=
∣∣∣χEp,t(x)− χEp,t(y)

∣∣∣− z(x, y)
(
χEp,t(x)− χEp,t(y)

)
.

Then, using that |z(x, y)| ⩽ 1 and (4.2), we infer that Υ ⩾ 0, and∫ +∞

−∞
Υ(t) dt = 0.

As a consequence, Υ vanishes for a.e. t ∈ R, and hence∣∣∣χEp,t(x)− χEp,t(y)
∣∣∣ = z(x, y)

(
χEp,t(x)− χEp,t(y)

)
.
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This leads to

PK(Ep,t,Ω) =

∫∫
Ω♯

1

2
z(x, y)

(
χEp,t(x)− χEp,t(y)

)
K(x, y) dx dy,

as desired. □

Proof of Proposition 4.1. Let t ∈ R. We consider a set F such that F \ Ω = Ep,t \ Ω. By Lemma 4.2,
we have that PK(F,Ω) < +∞.

We define the function χ̃ := χEp,t − χF . We notice that χ̃ = 0 in Ωc and

∥χ̃∥L1(Ω) +

∫∫
Ω♯

1

2
|χ̃(x)− χ̃(y)|K(x, y) dx dy ⩽ 2|Ω|+ PK(Ep,t,Ω) + PK(F,Ω) < +∞.

Thus, by [FSV15, Theorem 6], there exists3 a sequence of functions ηℓ ∈ C∞
c (Ω, [−1, 1]) such that

lim
ℓ→+∞

∫∫
Ω♯

1

2

∣∣∣(χEp,t − χF − ηℓ
)
(x)−

(
χEp,t − χF − ηℓ

)
(y)
∣∣∣K(x, y) dx dy = 0(4.3)

and lim
ℓ→+∞

∥χEp,t − χF − ηℓ∥L1(Ω) = 0.(4.4)

Owing to Corollary 3.2, we have that, for every ℓ ∈ N,∫∫
Rn×Rn

1

2
z(x, y)

(
ηℓ(x)− ηℓ(y)

)
K(x, y) dx dy +

∫
Rn

g(x) ηℓ(x) dx = 0.

In this way, using also the Dominated Convergence Theorem, we obtain∫
F∩Ω

g(x) dx−
∫
Ep,t∩Ω

g(x) dx = −
∫
Rn

g(x)
(
χEp,t(x)− χF (x)

)
dx

= − lim
ℓ→+∞

∫
Rn

g(x) ηℓ(x) dx

= lim
ℓ→+∞

∫∫
Rn×Rn

1

2
z(x, y)

(
ηℓ(x)− ηℓ(y)

)
K(x, y) dx dy.

(4.5)

Now, from Lemma 4.3, we know that

PK(Ep,t,Ω) =

∫∫
Ω♯

1

2
z(x, y)

(
χEp,t(x)− χEp,t(y)

)
K(x, y) dx dy.

Since |z| ⩽ 1, we also have that

PK(F,Ω) ⩾
∫∫

Ω♯

1

2
z(x, y)

(
χF (x)− χF (y)

)
K(x, y) dx dy

and hence

PK(Ep,t,Ω)− PK(F,Ω) ⩽
∫∫

Ω♯

1

2
z(x, y)

((
χEp,t − χF

)
(x)−

(
χEp,t − χF

)
(y)
)
K(x, y) dx dy.

Using this and (4.3), we find that

PK(Ep,t,Ω)− PK(F,Ω) ⩽ lim
ℓ→+∞

∫∫
Ω♯

1

2
z(x, y)

(
ηℓ(x)− ηℓ(y)

)
K(x, y) dx dy

= lim
ℓ→+∞

∫∫
Rn×Rn

1

2
z(x, y)

(
ηℓ(x)− ηℓ(y)

)
K(x, y) dx dy,

where the last equality is due to the fact that ηℓ vanishes outside Ω.

3On the one hand, we point out that Theorem 6 in [FSV15] is stated and proved for general open sets Ω ⊆ Rn with
continuous boundary and the space

Xs,p
0 :=

{
u ∈ Lp(Ω) s.t. ∥u∥Lp(Ω) +

∫∫
Rn×Rn

|u(x)− u(y)|K(x− y) dx dy < +∞ and u = 0 in Ωc

}
,

for some p ⩾ 1, and K : Rn\{0} → R. In particular, the shape of the kernel K plays a role in proving [FSV15, Theorem 6]
(see in particular [FSV15, Lemma 12]).

On the other hand, by inspection of the proofs contained there, we see that analogous results with a more general
kernel K : Rn × Rn → R satisfying (1.2), (1.3), (1.4), and (1.5) can be established using the same arguments and
considering the space Xs,p

0 ∩ L∞(Ω), as in the setting studied here.
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This, in tandem with (4.5), yields

(4.6) PK(Ep,t,Ω)− PK(F,Ω) ⩽
∫
F∩Ω

g(x) dx−
∫
Ep,t∩Ω

g(x) dx,

showing the class-A minimality of Ep,t. □

Now, since we think it is interesting per se, we show that the functional J is continuous with respect
to the L1

loc-convergence of class-A minimizers. As a byproduct, we obtain that class-A minimizers
are closed with respect to the L1

loc-convergence, i.e. the limit of a convergent sequence of class-A
minimizers in L1

loc is a class-A minimizer itself. Our proof follows the ideas of [CRS10, Theorem 3.3]
(see also [DVV, Proposition 2.1]).

Lemma 4.4. Let K : Rn × Rn → R satisfy (1.3) and (1.4) and let {Ej}j be a sequence of class-A
minimizers for J such that Ej → E in L1

loc(Rn), for some set E ⊆ Rn.
Then, E is a class-A minimizer for J .
Moreover, for any domain Ω ⊆ Rn, we have

(4.7) lim
j→+∞

J (Ej ,Ω) = J (E,Ω).

Proof. Let Ω be a smooth domain of Rn. Let also F ⊆ Rn be a competitor for E in Ω, namely F \Ω =
E \ Ω. Define the sequence of sets {Fj}j as

Fj := (F ∩ Ω) ∪ (Ej ∩ Ωc).

In particular, we have Fj \ Ω = Ej \ Ω and therefore, by the class-A minimality of Ej ,

J (Ej ,Ω) ⩽ J (Fj ,Ω).

Consequently, thanks to the lower semicontinuity of PK and the L1
loc-convergence of Ej to E (together

with the fact that g is bounded), we infer that

(4.8) J (E,Ω) ⩽ lim inf
j→+∞

J (Ej ,Ω) ⩽ lim inf
j→+∞

J (Fj ,Ω).

Now we observe that

J (Fj ,Ω) = PK(Fj ,Ω) +

∫
Fj∩Ω

g(x) dx

= PK(F,Ω) + 2

∫∫
Ω×Ωc

χF c(x)
(
χEj (y)− χF (y)

)
K(x, y) dx dy +

∫
F∩Ω

g(x) dx

= J (F,Ω) + 2

∫∫
Ω×Ωc

χF c(x)
(
χEj (y)− χE(y)

)
K(x, y) dx dy.

This, recalling also (1.4), yields that

|J (Fj ,Ω)− J (F,Ω)| ⩽ 2

∫∫
Ω×Ωc

χF c(x)χEj∆E(y)K(x, y) dx dy

⩽ 2κ2

∫∫
Ω×Ωc

χEj∆E(y)

|x− y|n+2s1
dx dy

=: bj .

(4.9)

Now, we have that
lim

j→+∞
bj = 0,

see [DVV, Appendix A] (see also the proof of [CRS10, Theorem 3.3]).
It follows from this and (4.9) that

(4.10) lim sup
j→+∞

J (Fj ,Ω) ⩽ lim sup
j→+∞

(J (F,Ω) + bj) = J (F,Ω).

This and (4.8) give that

(4.11) J (E,Ω) ⩽ J (F,Ω),

hence E is a minimizer for J in Ω.
In addition, choosing

Fj := (E ∩ Ω) ∪ (Ej ∩ Ωc),
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we deduce from (4.8) and (4.10) that

J (E,Ω) ⩽ lim inf
j→+∞

J (Ej ,Ω) ⩽ lim sup
j→+∞

J (Ej ,Ω) ⩽ J (E,Ω),

which entails (4.7) for every smooth domain Ω.
Moreover, if ∂Ω is not C∞, by interior smooth approximation, there exists a sequence {Ωh}h of

smooth domains such that Ωh ⊆ Ω, for every h, and Ωh → Ω locally in Rn. Then, since PK is
continuous with respect to the L1

loc-convergence of the domain, we obtain (4.7) and (4.11) for every
domain Ω ⊆ Rn.

By the arbitrariness of Ω, we conclude that E is class-A minimizer for J . □

Proof of Theorem 1.9. Let t ∈ R and consider a sequence {tj}j ⊆ R such that tj → t, as j → +∞,
and Proposition 4.1 holds true for every tj . Moreover, up to take a subsequence, suppose that

t ⩽ tj ⩽ tj−1 ⩽ . . . ⩽ t0.

Thus, recalling that Ep,t = {vp > t} (see (1.16)), we have that, for a.e. x ∈ Rn,

lim
j→+∞

|χEp,t(x)− χEp,tj
(x)| = lim

j→+∞
|χ{vp>t}(x)− χ{vp>tj}(x)| = lim

j→+∞
χ{t<vp⩽tj}(x) = 0.

Therefore, for any domain Ω ⊆ Rn, thanks to the Dominated Convergence Theorem (with domi-
nant χEp,t ∈ L1(Ω)), we obtain

lim
j→+∞

∫
Ω
|χEp,t(x)− χEp,tj

(x)| dx = 0.

Hence,

Ep,tj → Ep,t in L1
loc(Rn).

Thus, thanks to Lemma 4.4, we infer that also Ep,t is a class-A minimizer for J and this concludes
the proof. □

5. Density estimates for minimizers of the functional F

In this section we show that the level sets Ep,t defined in (1.16) satisfy some uniform density
estimates. Heuristically, if x0 ∈ ∂Ep,t, then, for any small r > 0, the sets Br(x0)∩Ep,t and Br(x0)∩Ec

p,t

have comparable measure. The precise statement goes as follows:

Proposition 5.1. Let K : Rn×Rn → R satisfy (1.2), (1.3), (1.4), and (1.5) and let up be a minimizer
for Ep in W.

Let also vp(x) and Ep,t be defined as in (1.15) and (1.16), respectively.
Then, there exists a constant c0 ∈ (0, 1), depending only on n, s1, and κ2, such that, for any x0 ∈

(∂E) ∩Q and r ∈ (0,min{δ/4, dist(x0, ∂Q)}),

(5.1) c0r
n ⩽ |Ep,t ∩Br(x0)| ⩽ (1− c0)r

n,

whenever ∥g∥Ln/2s1 (Q) < (c0/2)
−n/2s1.

This result is a direct consequence of the fact that every set Ep,t is almost minimal in the following
sense:

Definition 5.2 (Almost-minimality). Let Ω ⊆ Rn be a Lipschitz domain. Let Λ > 0 and ξ ∈ R. We
say that a set E ⊆ Rn with finite K-perimeter is (Λ, ξ)-minimal in Ω if

PK(E,Ω) ⩽ PK(F,Ω) + Λ|E∆F |1−ξ,

for any set F ⊆ Rn such that F \ Ω = E \ Ω.

In [DVV], the authors have proved the Hölder-regularity for (Λ, 0)-minimizers of the 2s-perimeter
(compare Definition 5.2 here with Definition 1.1 in [DVV]). In particular, they have shown in [DVV,
Theorem 2.2] that (Λ, 0)-minimal sets satisfy suitable uniform density estimates. A slight modification
of the argument used there produces uniform density estimates for

(
Λ, 2sn

)
-minimal sets, for any s ∈

(0, 1/2). We refer to Appendix B for a detailed proof. Here, we focus on proving the following:
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Lemma 5.3. Let K : Rn × Rn → R satisfy (1.2), (1.3), (1.4), and (1.5) and let up be a minimizer
for Ep in W.

Let also vp and Ep,t be defined as in (1.15) and (1.16), respectively.

Then, Ep,t is a
(
∥g∥Ln/2s1 (Q),

2s1
n

)
-minimal set in Q (in the sense of Definition 5.2).

Proof. Let F ⊆ Rn be a set such that F \Q = Ep,t \Q. Then, by Theorem 1.9 and using the Hölder
inequality, we infer that

PK(Ep,t, Q)− PK(F,Q) = J (Ep,t, Q)− J (F,Q)−
∫
Q
g(x)

(
χEp,t(x)− χF (x)

)
dx

⩽
∫
Q
|g(x)|

∣∣χEp,t(x)− χF (x)
∣∣ dx ⩽ ∥g∥Ln/2s1 (Q)|Ep,t∆F |1−

2s1
n . □

With this, we can now complete the proof of Proposition 5.1.

Proof of Proposition 5.1. According to Lemma 5.3, Ep,t is a
(
∥g∥Ln/2s1 (Q),

2s1
n

)
-minimal set in Q in

the sense of Definition 5.2. Thus, Proposition B.1 yields the desired result provided that ∥g∥Ln/2s1 (Q) <

(c0/2)
−n/2s1 (e.g up to considering γ in Theorem 1.4 small enough). □

6. Minimizers of Ep have controlled oscillations - Proof of Theorem 1.10

In this section, we focus on the proof of Theorem 1.10. Our argument relies on the following result
which provides a lower bound for PK .

In the following, we will use the notation Q̃q,ζ := q + (−ζ, ζ)n, with q ∈ Rn and ζ > 0.

Lemma 6.1. Let E ⊆ Rn satisfy the uniform density estimates in Proposition 5.1 in a Lipschitz
domain Ω ⊆ Rn.

Moreover, suppose that there exists a cube Q̃q̄,ζ̄ ⊆ Ω, for some q̄ ∈ Ω and some small ζ̄ > 0, such

that Q̃q̄,3ζ̄ ⊆ Ω and Q̃q̄,ζ̄ ∩ ∂E ̸= ∅.
Then, there exists a constant C > 0, depending only on n, s1, κ1, κ2, δ, and Ω, such that

(6.1) PK(E,Ω) ⩾ C.

Proof. Let us decompose Rn into disjoint cubes of side ζ, for some given ζ ∈
(
0,min

{
δ

6
√
n
, ζ̄
})

, with δ

as in (1.4). Consider the set

Q
ζ
:=
{
Q̃q,ζ such that Q̃q,ζ ⊆ Q̃q,3ζ ⊆ Ω, Q̃q,ζ ∩ ∂E ̸= ∅

}
.

Notice that Q
ζ
̸= ∅ since Q̃q̄,ζ̄ ∈ Q

ζ
. Define Nζ := #(Q

ζ
), namely the number of elements of Q

ζ
.

Let x0 ∈ Q̃q,ζ ∩ ∂E, for some Q̃q,ζ ∈ Q
ζ
. Then, we have that Bζ(x0) ⊆ Q̃q,3ζ ⊆ Ω. Thus, since E

satisfies (5.1) by assumption, we obtain that

|E ∩ Q̃q,3ζ | ⩾ c0ζ
n and |Ec ∩ Q̃q,3ζ | ⩾ c0ζ

n.

From this, using also that |x− y| ⩽ 3
√
nζ < δ, for every x, y ∈ Q̃q,3ζ , and (1.4), we deduce that

LK(E ∩ Q̃q,3ζ , E
c ∩ Q̃q,3ζ) ⩾ κ1

∫
E∩Q̃q,3ζ

∫
Ec∩Q̃q,3ζ

dx dy

|x− y|n+2s1

⩾ κ1

∫
E∩Q̃q,3ζ

∫
Ec∩Q̃q,3ζ

(
3
√
nζ
)−n−2s1 dx dy

= κ1
(
3
√
nζ
)−n−2s1 |E ∩ Q̃q,3ζ | |Ec ∩ Q̃q,3ζ |

⩾ Cζn−2s1 ,

(6.2)

for some C > 0, depending only on n, s1, κ1, and κ2.
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Set now Rζ to be the family of all cubes Q̃q,ζ such that Q̃q,3ζ ⊆ Ω, and notice that Q
ζ
⊆ Rζ . Thus,

using (6.2), we see that

LK(E ∩ Ω, Ec ∩ Ω) ⩾
∑

Q̃q,ζ∈Rζ ,

Q̃q′,ζ∈Rζ

LK(E ∩ Q̃q,ζ , E
c ∩ Q̃q′,ζ) ⩾ 3−2n

∑
Q̃q,ζ∈Rζ ,

Q̃q′,ζ∈Rζ

LK(E ∩ Q̃q,3ζ , E
c ∩ Q̃q′,3ζ)

⩾ 3−2n
∑

Q̃q,ζ∈Rζ

LK(E ∩ Q̃q,3ζ , E
c ∩ Q̃q,3ζ) ⩾ 3−2n

∑
Q̃q,ζ∈Q ζ

LK(E ∩ Q̃q,3ζ , E
c ∩ Q̃q,3ζ)

⩾ 3−2nCNζζ
n−2s1 .

From this, we infer that

PK(E,Ω) ⩾ 3−2nCNζζ
n−2s1 ,

which entails the desired estimate. □

Before proving Theorem 1.10, we observe that, since up is Zn-periodic by assumption, we have that

osc
Q
(up) = osc(up) := osc

Rn
(up) = ess sup

Rn
up − ess inf

Rn
up.

Thus, in what follows, we will simply write osc(up).

Proof of Theorem 1.10. Let us recall that Ep,t = {vp > t} (see (1.16)). In virtue of Proposition 5.1,
we have that Ep,t satisfies the assumptions of Lemma 6.1 with Ω := Q. Thus, integrating (6.1) over
the set

Tp := {t ∈ R s.t. Ep,t ∩Q ̸= ∅},
we obtain

(6.3)

∫
Tp

PK(Ep,t, Q) dt ⩾ C|Tp| = C osc
Q
(vp),

where C is as in Lemma 6.1.
On the other hand, by the layer cake representation we have that∫

Tp
PK(Ep,t, Q) dt ⩽

∫ +∞

−∞

(∫∫
Q♯

1

2
|χEp,t(x)− χEp,t(y)|K(x, y) dx dy

)
dt

=

∫∫
Q♯

(∫ +∞

−∞

1

2
|χEp,t(x)− χEp,t(y)|K(x, y) dt

)
dx dy

=

∫∫
Q♯

1

2
|vp(x)− vp(y)|K(x, y) dx dy

⩽ 2

∫∫
Q×Rn

1

2
|vp(x)− vp(y)|K(x, y) dx dy

= 2

(
Ep(up)−

∫
Q
g(x)up(x)dx

)
.

(6.4)

Also, by the minimality of up and (1.3), we deduce that

(6.5) Ep(up) ⩽ Ep(0) ⩽ c|p|,

for some constant c > 0 independent of p.
Moreover, since

∫
Q up(x) dx = 0, we have that

ess inf
Rn

up = ess inf
Q

up ⩽ 0 ⩽ ess sup
Q

up = ess sup
Rn

up,

and hence |up| ⩽ osc(up). It thereby follows that

−
∫
Q
g(x)up(x)dx ⩽

∫
Q
|g(x)||up(x)|dx ⩽ |Q|(n−s1)/n∥g∥Ln/s1 (Q) osc(up)

⩽ ∥g∥Ln/s1 (Q)

(
osc
Q
(vp) +

√
n|p|

)
.
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Plugging this and (6.5) into (6.4), we obtain∫
Tp

PK(Ep,t, Q)dt ⩽ c|p|+ 2∥g∥Ln/s1 (Q) oscQ
(vp),

up to renaming c.
This and (6.3) entail that

osc
Q
(vp) ⩽ c|p|,

provided that ∥g∥Ln/s1 (Q) ⩽ C/4 (where C is as in Lemma 6.1).

Besides,
osc(up) ⩽ osc

Q
(vp) +

√
n|p| ⩽ (c+

√
n)|p|. □

Proof of Corollary 1.12. For any t ∈ Tp (i.e. t ∈ R such that Ep,t ∩Q ̸= ∅), by Theorem 1.9 we have
that Ep,t is a class-A minimizer for J .

Moreover, notice that for any x1 ∈ Ep,t, we have by definition that

(6.6) p · x1 > t− up(x1).

Now, since ∂Ep,t ∩Q ̸= ∅, there exist y1 ∈ Q such that

up(y1) + p · y1 ⩽ t.

In particular, we have that
up(y1)−

√
n|p| ⩽ t.

Hence, using also (6.6), we infer that

p · x1 > t− up(x1) ⩾ up(y1)− up(x1)−
√
n|p| ⩾ − osc(up)−

√
n|p|.

From this and Theorem 1.10, it follows that

p · x1 > −
(
osc(up) +

√
n|p|

)
⩾ −(c+ 2

√
n)|p|.

Thus, setting M := c+ 2
√
n, we obtain (1.17).

Analogously, for any x2 ∈ Ec
p,t, we have that

p · x2 ⩽ t− up(x2).

Moreover, from ∂Ep,t ∩Q ̸= ∅, we deduce that there exist y2 ∈ Q such that

up(y2) +
√
n|p| ⩾ up(y2) + p · y2 ⩾ t.

We infer from the last two displays that

p · x2 ⩽ t− up(x2) ⩽ up(y2)− up(x2) +
√
n|p| ⩽ osc(up) +

√
n|p| ⩽M.

This entails that
Ec

p,t ⊆ {x ∈ Rn s.t. x · p ⩽M |p|}
which reads (1.18), concluding the proof. □

7. Preliminary results for the Γ-convergence

In this section, we state and prove some preliminary results which are useful for the proof of the Γ-
convergence stated in Theorem 1.13.

In what follows, we will often use a stronger version of [AB98b, Theorem 2.8] to show that the
energy contribution due to the interactions with the outside of the domain are negligible in the limit.
We recall such result for the convenience of the reader.

Lemma 7.1 ([AB98b, Theorem 2.8]). Let A and B be open subsets of Rn and assume that A is
bounded with Lipschitz boundary. Moreover, define Σ := ∂A ∩ ∂B.

Let also K satisfy (1.2), (1.3), (1.4), and (1.5) and let {εj}j be an infinitesimal sequence.
Consider a sequence of functions {uj : A∪B → [−1, 1]}j and assume that there exists an infinites-

imal sequence {ηj}j such that

lim
j→+∞

uj(x+ ηjh) = v(x), for a.e. x ∈ Σ and a.e h ∈ A,

and lim
j→+∞

uj(x+ ηjh) = w(x), for a.e. x ∈ Σ and a.e. h ∈ B,

for some functions v, w : Σ → [−1, 1].
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Then, there exists a constant CK > 0 depending only on K such that

lim sup
j→+∞

∫∫
A×B

|uj(x)− uj(y)|Kεj (x, y) dx dy ⩽ CK

∫
Σ
|v(x)− w(x)| dHn−1(x).

Notice that, in our setting, a suitable rescaled sequence of planelike minimizers (for J ) satisfies the
assumptions of Lemma 7.1.

For later convenience, for any p ∈ Sn−1 let us define the set

(7.1) Ip := {x · p < 0}.

Then, we have the following:

Lemma 7.2. Let p ∈ Sn−1 and let Ep be a set such that

(7.2) {x · p ⩽ −M} ⊆ Ep ⊆ {x · p ⩽M},

for some M > 0.
Let {εj}j be an infinitesimal sequence and define uj := χεjEp.
Then, for every Lipschitz domain Ω, we have that, for a.e. x ∈ ∂Ω and a.e. h ∈ Rn,

lim
j→+∞

uj(x+ ε2jh) = χIp(x).

Proof. We observe that, thanks to (7.2),

(7.3) {x · p ⩽ −εjM} ⊆ εjEp ⊆ {x · p ⩽ εjM}.

Now, let x ∈ ∂Ω \ ∂Ip, then x · p ̸= 0 and therefore |x · p| > εj(M + 1) as soon as j is large enough.
Moreover, if h ∈ (∂Ω ∩ ∂Ip)c, possibly taking j larger, we can assume that εj |h| ⩽ 1.

Suppose first that x · p > εj(M + 1). In this case, we see that

(x+ ε2jh) · p = x · p+ ε2jh · p ⩾ x · p− ε2j |h| > εj(M + 1)− εj = εjM.

It thereby follows from this and (7.3) that, for any j large enough,

uj(x+ ε2jh)− χIp(x) = χεjEp(x+ ε2jh)− χIp(x) = 0.

If instead x · p < −εj(M + 1), then

(x+ ε2jh) · p = x · p+ ε2jh · p ⩽ x · p+ ε2j |h| < −εj(M + 1) + εj = −εjM.

Thus, recalling (7.3), we get that, for any j large enough,

uj(x+ ε2jh)− χIp(x) = χεjEp(x+ ε2jh)− χIp(x) = 1− 1 = 0.

These considerations establish the desired limit. □

Another crucial step to prove Theorem 1.13 is showing that, for every set F ⊆ Rn,

E (F,BR) :=

∫∫
BR×Rn

χF (x)χF c(y)K(x, y) dx dy +

∫
Q(BR)1∩F

g(x) dx

(namely (1.20) with ε := 1 and Ω := BR) is non-negative in any large ball.

Proposition 7.3. Let K satisfy (1.2), (1.3), (1.4), and (1.5).
Then, if ∥g∥L∞(Rn) ⩽

κ3
2 , we have that

E (F,BR) ⩾ 0,

for every set F ⊆ Rn and for every R > 1.

This result is a consequence of the following lemma.

Lemma 7.4. Let K satisfy (1.2), (1.3), (1.4), and (1.5).
Then, for every set F ⊆ Rn,∫∫

Q×Q
χF (x)χF c(y)K(x, y) dx dy +

∫
Q∩F

g(x) dx ⩾
(κ3
2

− ∥g∥L∞(Rn)

)
min{|F ∩Q|, |F c ∩Q|}.
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Proof. Notice that

|F ∩Q| |F c ∩Q| = min{|F ∩Q|, |F c ∩Q|}
(
1−min{|F ∩Q|, |F c ∩Q|}

)
⩾

1

2
min{|F ∩Q|, |F c ∩Q|}.

(7.4)

Moreover, recalling (1.1), we have that∫
Q∩F

g(x) dx = −
∫
Q∩F c

g(x) dx ⩾ −∥g∥L∞(Rn)min{|F ∩Q|, |F c ∩Q|}.

Thus, from this, (1.5), and (7.4), we obtain that∫∫
Q×Q

χF (x)χF c(y)K(x, y) dx dy +

∫
Q∩F

g(x) dx

⩾ κ3|F ∩Q| |F c ∩Q| − ∥g∥L∞(Rn)min{|F ∩Q|, |F c ∩Q|}

⩾
(κ3
2

− ∥g∥L∞(Rn)

)
min{|F ∩Q|, |F c ∩Q|},

showing the result. □

Proof of Proposition 7.3. Notice that

E (F,BR) =

∫∫
BR×Rn

χF (x)χF c(y)K(x, y) dx dy +

∫
Q(BR)1∩F

g(x) dx

⩾
∫∫

Q(BR)1×Rn

χF (x)χF c(y)K(x, y) dx dy +

∫
Q(BR)1∩F

g(x) dx

⩾
∑
j∈Zn

j+Q⊆BR

(∫∫
(F∩(j+Q))×(F c∩(j+Q))

K(x, y) dx dy +

∫
F∩(j+Q)

g(x) dx

)
.

In light if this, the claim in Proposition 7.3 will follow if we show that

(7.5)

∫∫
(F∩(j+Q))×(F c∩(j+Q))

K(x, y)dxdy +

∫
F∩(j+Q)

g(x)dx ⩾ 0,

for every j ∈ Zn such that j +Q ⊆ BR.
Now, using Lemma 7.4 in combination with (1.2) and the periodicity g, we deduce that∫∫

(F∩(j+Q))×(F c∩(j+Q))
K(x, y) dx dy +

∫
F∩(j+Q)

g(x) dx

=

∫∫
((F−j)∩Q)×((F c−j)∩Q)

K(x, y) dx dy +

∫
(F−j)∩Q

g(x) dx

⩾
(κ3
2

− ∥g∥L∞(Rn)

)
min{|(F − j) ∩Q|, |(F c − j) ∩Q|}

⩾ 0,

whenever ∥g∥L∞(Rn) ⩽
κ3
2 . This shows (7.5), as desired. □

8. Well-definedness of the stable norm ϕ

In this section, we prove that the stable norm ϕ given in (1.21) is well-defined. The results presented
below are the analogues in our setting of Lemma A.1 and Corollary A.2 in [CT09].

Proposition 8.1. Let K satisfy (1.2), (1.3), (1.4), and (1.5). Let g ∈ L∞(Q) be a Zn-periodic
function such that

∫
Q g = 0.

Assume that for any p ∈ Sn−1 there exists a planelike minimizer Ep for J in direction p such that

(8.1) ∂Ep ⊆ {|x · p| ⩽M},

for some M > 0 independent of p.
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Then, there exists a function ϕ : Sn−1 → R such that, for any infinitesimal sequence {εj}j and any
planelike minimizer E′

p for J in direction p satisfying (8.1), it holds

(8.2) ϕ(p) = lim
j→+∞

Fεj (εjE
′
p, Q

p) = lim
j→+∞

εn−1
j F

(
E′

p,
1

εj
Qp

)
.

In order to prove Proposition 8.1, we need the auxiliary results in Lemmata 8.2 and 8.3 here below.

Lemma 8.2. Let E ⊆ Rn satisfy (8.1). Let also α ∈ (0, 2s2 − 1), where s2 is as in (1.4).
Then,

(8.3) lim
R→+∞

F (E,AR,R1+α,R)

Rn−1
= 0,

where AL1,L2,R := {L1 < |x · p| < L2, |x · p⊥| < R}.

Proof. Let us call for simplicity

A+
R,R1+α,R

:= AR,R1+α,R ∩ {x · p > 0}.

Without loss of generality, we suppose that

(8.4) {x · p > M} ⊆ E.

Let us also take R so large that

M ⩽
R

2
.

We claim that

(8.5) E ∩AR,R1+α,R = A+
R,R1+α,R

.

To check this, we first show that

(8.6) x · p > R for every x ∈ E ∩AR,R1+α,R.

Indeed, if x ∈ AR,R1+α,R, we have that |x · p| > R, namely either x · p < −R or x · p > R.
Let now x ∈ E ∩ AR,R1+α,R and suppose that x · p < −R. Then thanks to (8.1) and (8.4) we have

that

−R > x · p > −M ⩾ −R
2
,

which gives the desired contradiction and establishes (8.6).
In light of (8.6), we see that

(8.7) E ∩AR,R1+α,R ⊆ A+
R,R1+α,R

.

Furthermore, for every x ∈ A+
R,R1+α,R

, we have that x · p > R > M , which entails that x ∈ E,

thanks to (8.4). This proves that

A+
R,R1+α,R

⊆ E ∩AR,R1+α,R.

The claim in (8.5) then follows from this and (8.7).
As a consequence of (8.5) we also have that

E ∩Q(AR,R1+α,R)1 = Q
(
A+

R,R1+α,R

)
1
.

Hence, recalling also (1.1), we infer that

(8.8)

∫
E∩Q(AR,R1+α,R)1

g(x) dx =

∫
Q
(
A+

R,R1+α,R

)
1

g(x) dx = 0.
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Additionally, using (8.4) and (8.5), and recalling (1.4), we obtain∫∫
AR,R1+α,R×Rn

χE(x)χEc(y)K(x, y) dx dy ⩽ κ2

∫∫
(E∩AR,R1+α,R)×Ec

dx dy

|x− y|n+2s2

⩽ κ2

∫∫
A+

R,R1+α,R
×{y·p⩽M}

dx dy

|x− y|n+2s2

= κ2

∫∫
A+

R,R1+α,R
×({y·p⩽M}∩BR)

dx dy

|x− y|n+2s2
+ κ2

∫∫
A+

R,R1+α,R
×({y·p⩽M}∩Bc

R)

dx dy

|x− y|n+2s2

=: I1 + I2,

(8.9)

and we aim to estimate I1 and I2.
First, notice that for every x ∈ A+

R,R1+α,R
and y ∈ {y · p ⩽M}, we have that x · p > R and

|x− y| ⩾ (x− y) · p = x · p− y · p > R−M ⩾
R

2
.

It thereby follows that

(8.10) A+
R,R1+α,R

× {y · p ⩽M} ⊆
{
(x, y) ∈ Rn × Rn : |x− y| > R

2

}
.

Using this, we see that

I1 ⩽ κ2

∫∫
A+

R,R1+α,R
×({y·p⩽M}∩BR)

{|x−y|>R/2}

dx dy

|x− y|n+2s2

⩽
2n+2s2κ2|AR,R1+α,R| |{y · p ⩽M} ∩BR|

Rn+2s2

⩽
c(R1+α −R)Rn−1Rn

Rn+2s2

= cRn+α−2s2 ,

(8.11)

for some positive constant c = c(n, s2, κ2,M), possibly changing at every step of the calculation.
Besides, exploiting again (8.10) and changing variable h := y − x,

I2 ⩽ κ2

∫∫
A+

R,R1+α,R
×({y·p⩽M}∩Bc

R)

{|x−y|>R/2}

dx dy

|x− y|n+2s2
⩽ κ2|AR,R1+α,R|

∫
Bc

R/2

dh

|h|n+2s2

⩽ c(R1+α −R)Rn−1

∫ +∞

R/2

dρ

ρ1+2s2
= cRn+α−2s2 .

Gathering this, (8.9), and (8.11) together, we deduce that∫∫
AR,R1+α,R×Rn

χE(x)χEc(y)K(x, y) dx dy ⩽ cRn+α−2s2 .

From this and (8.8), we conclude that∣∣∣∣F (E,AR,R1+α,R)

Rn−1

∣∣∣∣ = 1

Rn−1

∣∣∣∣∣PK

(
E,AR,R1+α,R

)
+

∫
E∩Q(AR,R1+α,R)1

g(x) dx

∣∣∣∣∣ ⩽ cR1+α−2s2 ,

which entails (8.3). □

Lemma 8.3. Let E be a planelike minimizer for J satisfying (8.1).
Then, there exist C1, C2 ∈ R independent of ε such that

(8.12) C1ε
1−n ⩽ F

(
E,

1

ε
Qp

)
⩽ C2ε

1−n.

Moreover, let η ∈ (0, 1) such that η1+α < ε < η, for some parameter α ∈ (0, 2s2 − 1).
Then, there exists a constant c independent of ε and η such that

(8.13) F

(
E,

1

ε
Qp \ 1

η
Qp

)
⩽ c
(
ε1−n − η1−n + η2s2−1−α

)
,
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whenever η is small enough (and hence ε is small enough).

Proof. Since E satisfies (8.1), we suppose, without loss of generality, that

(8.14)
{
x · p > M

}
⊆ E.

We will use the notation Q̃ := k + Q, for some k ∈ Zn. Notice that Q(Q̃)1 = Q̃. Thus, by the
class-A minimality of E (for J ), we find

F (E, Q̃) = J (E, Q̃) ⩽ J (E \ Q̃, Q̃) = PK(E \ Q̃, Q̃) +

∫
(E\Q̃)∩Q̃

g(x) dx ⩽ PK(Q̃) = PK(Q).

Hence,

(8.15) PK(E, Q̃) = F (E, Q̃)−
∫
E∩Q̃

g(x) dx ⩽ PK(Q) + ∥g∥L1(Q).

Now, let SM := {|x · p| ⩽M} and take a (finite) covering of the strip SM ∩Qp/ε, namely

B :=
{
k +Q s.t. k ∈ Zn, (k +Q) ∩ (SM ∩Qp/ε) ̸= ∅

}
.

Observe that ♯(B) ⩽ 2(M +
√
n)ε1−n.

Then, using (8.15) together with the monotonicity and the subadditivity of PK with respect to the
domain, we infer that

(8.16) εn−1 PK

(
E,SM ∩ 1

ε
Qp

)
⩽ εn−1

∑
Q̃∈B

PK(E, Q̃) ⩽ 2(M +
√
n)
(
PK(Q) + ∥g∥L1(Q)

)
and

(8.17) εn−1

∣∣∣∣∣
∫
E∩Q(Qp/ε)1

g(x) dx

∣∣∣∣∣ = εn−1
∑
Q̃∈B

∣∣∣∣∣
∫
E∩Q(Qp/ε)1∩Q̃

g(x) dx

∣∣∣∣∣ ⩽ 2(M +
√
n)∥g∥L1(Q).

In particular, (8.17) yields

(8.18) εn−1F

(
E,

1

ε
Qp

)
⩾ εn−1

∫
E∩Q(Qp/ε)1

g(x) dx ⩾ −2(M +
√
n)∥g∥L1(Q).

Moreover, we claim that

(8.19) εn−1 PK

(
E,

1

ε
Qp \ SM

)
⩽ c.

To achieve this, let m ∈ N be such that 2−m ⩽ ε ⩽ 2−m+1. We define, for every j ∈ {0, . . . ,m− 1},

Cj :=
1

ε
Qp ∩

{
M2j ⩽ |x · p| ⩽M2j+1

}
⊆ Rn.

We recall (8.14) and we also set

S+
M :=

{
x · p > M

}
⊆ E

and S−
M :=

{
x · p < −M

}
⊆ Ec.

Then, we have

1

ε
Qp \ SM ⊆

m−1⋃
j=0

Cj .

Moreover, notice that every Cj can be covered with at most M2m(n−1)+j+1 cubes of side 1 centered
at points in Zn (let us call Bj such covering).

Let Q̃ := k + Q ∈ Bj , for some k ∈ Zn and some j ∈ {0, . . . ,m − 1}. Without loss of generality,

we can suppose that Q̃ ∩ S+
M ̸= ∅, and hence Q̃ ∩ S−

M = ∅. Notice also that Q̃c ∩ S−
M ⊆ Bc

(2j+1)M
(k).
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Thus, ∫∫
Q̃♯

χS+
M
(x)χS−

M
(y)K(x, y) dx dy =

∫∫
Q̃×(Q̃c∩S−

M )
K(x, y) dx dy

⩽ κ2

∫∫
Q̃×(Q̃c∩S−

M )

dx dy

|x− y|n+2s2
⩽ κ2

∫∫
Q̃×Bc

(2j+1)M
(k)

dx dy

|x− y|n+2s2

= κ2

∫∫
Q×Bc

(2j+1)M

dx dy

|x− y|n+2s2
= κ2

∫∫
Q×Bc

(2j+1)M
(x)

dx dh

|h|n+2s2

⩽ κ2|Q|
∫
Bc

2jM

dh

|h|n+2s2
⩽ c1 2

−2s2j ,

(8.20)

for some positive c1 = c1(n, s2, κ2,M) independent of m.
Now, observe that, by (8.14) and the definitions of S+

M and S−
M , we have that

E ∩ Sc
M = S+

M and Ec ∩ Sc
M = S−

M .

As a consequence,

PK

(
E,

1

ε
Qp \ SM

)
=

∫∫
(Qp/ε\SM )♯

χE(x)χEc(y)K(x, y) dx dy

=

∫∫
(Qp/ε\SM )×(Qp/ε\SM )

χE(x)χEc(y)K(x, y) dx dy

+

∫∫
((Qp/ε)c\SM )×(Qp/ε\SM )

χE(x)χEc(y)K(x, y) dx dy

+

∫∫
(Qp/ε\SM )×((Qp/ε)c\SM )

χE(x)χEc(y)K(x, y) dx dy

+

∫∫
SM×(Qp/ε\SM )

χE(x)χEc(y)K(x, y) dx dy +

∫∫
(Qp/ε\SM )×SM

χE(x)χEc(y)K(x, y) dx dy

=

∫∫
(Qp/ε\SM )♯

χS+
M
(x)χS−

M
(y)K(x, y) dx dy

+

∫∫
SM×(Qp/ε\SM )

χE(x)χS−
M
(y)K(x, y) dx dy +

∫∫
(Qp/ε\SM )×SM

χS+
M
(x)χEc(y)K(x, y) dx dy

⩽
∫∫

(Qp/ε\SM )♯

χS+
M
(x)χS−

M
(y)K(x, y) dx dy +

∫∫
SM×(Qp/ε\SM )

K(x, y) dx dy.

Moreover, by Proposition C.2, there exists a positive constant c2, independent of ε, such that

(8.21)

∫∫
SM×(Qp/ε\SM )

K(x, y) dx dy ⩽ PK(Qp/ε ∩ S+
M ) + PK(Qp/ε ∩ S−

M ) ⩽ c2ε
1−n.

Thus, the estimate in (8.20), in combination with (8.21) and the subadditivity of PK with respect
to the domain, entails that

εn−1 PK

(
E,

1

ε
Qp \ SM

)
⩽ εn−1

(∫∫
(Qp/ε\SM )♯

χS+
M
(x)χS−

M
(y)K(x, y) dx dy + c2ε

1−n

)

⩽ 2−(m−1)(n−1)

∫∫
(Qp/ε\SM )♯

χS+
M
(x)χS−

M
(y)K(x, y) dx dy + c2

⩽ 2−(m−1)(n−1)
m∑
j=0

∑
Q̃∈Bj

∫∫
Q̃♯

χS+
M
(x)χS−

M
(y)K(x, y) dx dy + c2

⩽ 2−(m−1)(n−1)
m∑
j=0

c12
m(n−1)+j2−2s2j + c2 ⩽ c1

∞∑
j=0

2(1−2s2)j + c2 =: c < +∞,

showing (8.19).
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Therefore, gathering (8.16), (8.18) and (8.19), we obtain

−2(M +
√
n)∥g∥L1(Q) ⩽ εn−1F

(
E,

1

ε
Qp

)
⩽ 2(M +

√
n)
(
PK(Q) + 2∥g∥L1(Q)

)
+ c,

showing (8.12).
Now, to prove (8.13), let us consider η1+α < ε < η, for some α ∈ (0, 2s2 − 1). We assume again

that 2−m ⩽ ε ⩽ 2−m+1, for some m ∈ N, and we decompose 1
εQ

p \ 1
ηQ

p as

1

ε
Qp \ 1

η
Qp =

(
1

ε
Qp \ 1

η
Qp

)
∩ SM ∪

m−1⋃
j=0

C̃j ,

where, for all j ∈ {0, . . . ,m− 1},

C̃j :=

(
1

ε
Qp \ 1

η
Qp

)
∩
{
M2j ⩽ |x · p| ⩽M2j+1

}
.

Notice that
(
1
εQ

p \ 1
ηQ

p
)
∩SM can be covered with at most 2M(ε1−n−η1−n) cubes of side 1. Similarly,

each cylinder C̃j can be covered with at most 2j(ε1−n − η1−n) translated unit cubes.
Therefore, arguing as for (8.12) and recalling Lemma 8.2, we deduce that, for every η small enough,

F

(
E,

1

ε
Qp \ 1

η
Qp

)
⩽ c(ε1−n − η1−n + η2s2−1−α),

for some positive constant c independent of η and ε, concluding the proof. □

Proof of Proposition 8.1. Let p ∈ Sn−1. In order to prove that the limit function ϕ in (8.2) is well-
defined, we show that if Ep and E′

p are two planelike minimizers for J with respect to some p such
that

∂Ep ∩ ∂E′
p ⊆ {|x · p| ⩽M},

and ε, ε′ > 0 are infinitesimal sequences such that the limits

ℓ := lim
ε→0

εn−1F

(
Ep,

1

ε
Qp

)
and ℓ′ := lim

ε′→0
(ε′)n−1F

(
E′

p,
1

ε′
Qp

)
exist, then it must be ℓ = ℓ′. To this purpose, up to taking subsequences, let us assume that ε′ ≪ ε
(e.g. ε′ ∼ ε1+α, for some α ∈ (0, 2s2 − 1)).

Following the footsteps of [CT09], we recall the notation for Ip in (7.1) and we consider a finite

covering of Ip ∩ Q(Qp/ε′)1 made of N :=

⌊(
ε

ε′(1+2ε
√
n)

)n−1
⌋
cubes that are translations of (2

√
n +

1/ε)Qp centered at Ip. Notice that each of this cube contains at least one translated cube Q(j) :=
j +Qp/ε, with j ∈ Zn. Let also

Ej := j +

(
Ep ∩

1

ε
Qp

)
⊆ Q(j).

Also, we define

(8.22) R :=
N⋃
j=1

Q(j) ⊆ Q(Qp/ε′)1 and F ′ :=

 N⋃
j=1

Ej

 ∪ (E′
p \R).

In particular, we have F ′ \ Q(Qp/ε′)1 = E′
p \ Q(Qp/ε′)1 (see Figure 1).
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Figure 1. The construction of the set F ′ as in (8.22).

Thus, by Remark 1.8, the subadditivity of PK with respect to the domain, and (1.2), we infer that

F

(
E′

p,
1

ε′
Qp

)
⩽ F

(
F ′,

1

ε′
Qp

)
= F

(
F ′, R ∪

(
1

ε′
Qp \R

))
⩽

N∑
j=1

F
(
Ej , Q

(j)
)
+

∫∫
(Qp/ε′\R)♯

χF ′(x)χ(F ′)c(y)K(x, y) dx dy

+

∫
F ′∩(Q(Qp/ε′)1\

⋃N
j=1 Q(Q(j))1)

g(x) d

⩽ NF

(
Ep,

1

ε
Qp

)
+

∫∫
(Qp/ε′\R)♯

χF ′(x)χ(F ′)c(y)K(x, y) dx dy

+

∫
F ′∩(Q(Qp/ε′)1\

⋃N
j=1 Q(Q(j))1)

g(x) dx.

(8.23)

At this stage, observe that

∂F ′ ∩ (Qp/ε′ \R) ⊆
{
|x · p| ⩽M + 2

√
n
}

can be covered with
⌊
(M + 2

√
n)
(
(ε′)1−n −Nε1−n

)⌋
cubes Q of side 1 and centered at Zn. Therefore,

it follows from (8.13) that∫∫
(Qp/ε′\R)♯

χF ′(x)χ(F ′)c(y)K(x, y) dx dy

⩽ c(M + 2
√
n)
(
(ε′)1−n −Nε1−n + ε2s2−1−α

)
⩽
c(M + 2

√
n)

(ε′)n−1

(
1−

(
ε′

ε

)n−1
⌊(

ε

ε′(1 + 2ε
√
n)

)n−1
⌋)

+ c(M + 2
√
n)ε2s2−1−α

=:
ξ(ε, ε′)

(ε′)n−1
,

(8.24)

for some function ξ such that ξ(ε, ε′) → 0, as ε, ε′, and ε′/ε ∼ εα → 0.
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Furthermore, since

∂F ′ ∩ (Q(QP /ε′)1 \
N⋃
j=1

Q(Q(j))1)) ⊆ {|x · p| ⩽M + 2
√
n}

can be covered with
⌊
(M + 2

√
n)
(
(ε′)1−n −N⌊ε1−n⌋

)⌋
cubes Qp of side 1 and centered at Zn, we also

have ∫
F ′∩(Q(QP /ε′)1\

⋃N
j=1 Q(Q(j))1))

g(x) dx ⩽ ∥g∥L1(Q)(M + 2
√
n)
(
(ε′)1−n −N⌊ε1−n⌋

)
=

∥g∥L1(Q)(M + 2
√
n)

(ε′)n−1

(
1− (ε′)n−1⌊ε1−n⌋

⌊(
ε

ε′(1 + 2ε
√
n)

)n−1
⌋)

=:
ζ(ε, ε′)

(ε′)n−1
,

(8.25)

for some function ζ such that ζ(ε, ε′) → 0, as ε→ 0 (and also ε′, ε′/ε→ 0). Indeed,

lim
ε′→0
ε→0

(ε′)n−1⌊ε1−n⌋

⌊(
ε

ε′(1 + 2ε
√
n)

)n−1
⌋

= lim
ε′→0
ε→0

(ε′)n−1
(
ε1−n − {ε1−n}

)(( ε

ε′(1 + 2ε
√
n)

)n−1

−

{(
ε

ε′(1 + 2ε
√
n)

)n−1
})

= 1,

where {·} := (·)− ⌊·⌋ denotes the fractional part of a real number.
Now, recalling the definitions of ℓ and ℓ′, and putting (8.23), (8.24) and (8.25) together, we obtain

(ε′)n−1F

(
E′

p,
1

ε′
Qp

)
⩽ (ε′)n−1

⌊(
ε

ε′(1 + 2ε
√
n)

)n−1
⌋

F

(
Ep,

1

ε
Qp

)
+ ξ(ε, ε′) + ζ(ε, ε′).

Hence, taking the limits for ε, ε′, and ε′/ε ∼ εα → 0, we deduce that ℓ′ ⩽ ℓ.
Interchanging the roles of ε and ε′, we also get that ℓ ⩽ ℓ′, concluding the proof. □

We stress that the construction of the cubes Q(j) in the proof of Proposition 8.1 remains unaltered if
we replaceQp/ε′ with one of its translated along ∂Ip. Indeed, notice that when we consider translations
of the cube (2

√
n + 1/ε)Qp, we do not ask any requirement on those translations but the fact that

they are centered at ∂Ip. Therefore, we infer that ϕ(p) is independent of translations of the domain
in directions orthogonal to p.

The precise statement goes as follows:

Corollary 8.4. Let K satisfy (1.2), (1.3), (1.4), and (1.5). Let g ∈ L∞(Q) be a Zn-periodic function
such that

∫
Q g = 0.

Let p ∈ Sn−1 and let Ep be a planelike minimizer for J in direction p that satisfies (8.1) . Let
also v ∈ ∂Ip, i.e. v · p = 0.

Then,

ϕ(p) = lim
ε→0

εn−1F

(
Ep, v +

1

ε
Qp

)
.

As a consequence, we deduce the following:

Corollary 8.5. Let K satisfy (1.2), (1.3), (1.4), and (1.5). Let g ∈ L∞(Q) be a Zn-periodic function
such that

∫
Q g = 0.

Let p ∈ Sn−1 and t ∈ Tp, so that Ep,t is a planelike minimizer for J in direction p that satisfies (8.1)
(according to Corollary 1.12).

Then, for any Lipschitz domain Ω ⊆ Rn,

(8.26) ϕ(p)Hn−1(Ω ∩ ∂Ip) = lim
ε→0

Fε(εEp,t,Ω),

where Ip is defined as in (7.1).

Proof. Let us consider sequences εj , ρj such that

(8.27) lim
j→+∞

εj = lim
j→+∞

ρj = lim
j→+∞

εj
ρj

= 0.
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Also, we consider the collection

Bj := {ρjQ̃ := εjvj + ρjQ
p s.t. vj ∈ ∂Ip, and ρjQ̃ ⊆ Ω}.

In particular, Nj := ♯(Bj) = ⌊ρ1−n
j Hn−1(Ω ∩ ∂Ip)⌋. Let us also denote

Rj :=
⋃

ρjQ̃∈Bj

ρjQ̃.

It is convenient to look at the family of cubes

QEp(Ω/εj)1 :=
⋃(

ℓ+Q
)

where the union is taken over all ℓ ∈ Zn such that ℓ+Q ⊂ Ω/εj and (ℓ+Q) ∩ ∂Ep ̸= ∅.
Thanks to (8.27), we can take j sufficiently large such that ρj/εj > M , and we have that

εn−1
j

∫
Ep∩Q(Ω/ε)1

g = εn−1
j

∫
Ep∩QEp (Ω/εj)1

g

=
∑

ρjQ̃∈Bj

(
εn−1
j

∫
Ep∩QEp (ρjQ̃/εj)1

g

)
+ εn−1

j

∫
Ep∩

(
QEp (Ω/εj)\

⋃
ρjQ̃∈Bj

QEp (ρjQ̃/εj)1

) g

=
∑

ρjQ̃∈Bj

(
εn−1
j

∫
Ep∩Q(ρjQ̃/εj)1

g

)
+ ψ(j),

(8.28)

where

ψ(j) := εn−1
j

∫
Ep∩

(
QEp (Ω/εj)1\

⋃
ρjQ̃∈Bj

QEp (ρjQ̃/εj)1

) g.
Now, let ηj := εj/ρj , and define

MΩ,j := ♯ {ℓ+Q ⊂ Ω/εj s.t. ℓ ∈ Zn and (ℓ+Q) ∩ ∂Ep ̸= ∅}

and M
Q̃,j

:= ♯
{
ℓ+Q ⊂ Q̃/ηj s.t. ℓ ∈ Zn and (ℓ+Q) ∩ ∂Ep ̸= ∅

}
, for every ρjQ̃ ∈ Bj .

Since Ep is a planelike in direction p, we have that

lim
j→+∞

εn−1MΩ,j = lim
j→+∞

♯ {εj(ℓ+Q) ⊂ Ω s.t. ℓ ∈ Zn and εj(ℓ+Q) ∩ ∂εjEp ̸= ∅}

= Hn−1(Ω ∩ ∂Ip)
(8.29)

and, similarly, for every ρjQ̃ ∈ Bj ,

lim
j→+∞

ηn−1M
Q̃,j

= lim
j→+∞

♯
{
ηj(ℓ+Q) ⊂ Q̃ s.t. ℓ ∈ Zn and ηj(ℓ+Q) ∩ ∂(ηjEp) ̸= ∅

}
= Hn−1(Q̃ ∩ ∂Ip) = 1.

(8.30)

Moreover, recalling that the fractional part of a real number is a bounded function, we deduce that

(8.31) lim
j→+∞

ρn−1
j Nj = lim

j→+∞
ρn−1
j

(
ρ1−n
j Hn−1(Ω ∩ ∂Ip)− {ρ1−n

j Hn−1(Ω ∩ ∂Ip}
)
= Hn−1(Ω ∩ ∂Ip).

Thus, from (8.29), (8.30), and (8.31) together, we infer that

|ψ(j)| ⩽ εn−1
j ∥g∥L1(Q)

MΩ,j −
∑

ρjQ̃∈Bj

MQ̃,j


= ∥g∥L1(Q)

Hn−1(Ω ∩ ∂Ip) + o(1)−
∑

ρjQ̃∈Bj

(
ρn−1 + o(ρn−1)

)
= ∥g∥L1(Q)

[
Hn−1(Ω ∩ ∂Ip) + o(1)−Nj

(
ρn−1 + o(ρn−1)

)]
−−−→
j→∞

0.

(8.32)
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Therefore, from (8.28) and recalling the definition of E from (1.20), we obtain that

εn−1
j F (Ep,Ω/εj) = εn−1

j E (Ep,Ω/εj) + εn−1
j LK(Ep ∩ Ω/εj , E

c
p ∩ Ωc/εj)

=
∑

ρjQ̃∈Bj

[
εn−1
j E

(
Ep,

ρj
εj
Q̃

)]
+ ψ(j) + εn−1

j PK(Ep, (Ω \Rj)/εj)

− εn−1
j LK(Ep ∩ (Ω \Rj)

c/εj , E
c
p ∩ (Ω \Rj)/εj)

+ εn−1
j LK(Ep ∩ Ω/εj , E

c
p ∩ Ωc/εj)

=
∑

ρjQ̃∈Bj

[
εn−1
j F

(
Ep,

ρj
εj
Q̃

)
− εn−1

j LK

(
Ep ∩

ρj
εj
Q̃, Ec

p ∩
ρj
εj
Q̃c

)]
+ ψ(j) + εn−1

j PK(Ep, (Ω \Rj)/εj)

− εn−1
j LK(Ep ∩ (Ω \Rj)

c/εj , E
c
p ∩ (Ω \Rj)/εj)

+ εn−1
j LK(Ep ∩ Ω/εj , E

c
p ∩ Ωc/εj).

At this point, observe that it follows from Corollary 8.4, Lemma 7.1, and our choice of ρjQ̃ that

εn−1
j F

(
Ep,

ρj
εj
Q̃

)
− εn−1

j LK

(
Ep ∩

ρj
εj
Q̃, Ec

p ∩
ρj
εj
Q̃c

)
= ρn−1

j ϕ(p) + o(ρn−1
j ).

Thus, we infer that

εn−1
j F (Ep,Ω/εj)

=Nj

(
ρn−1
j ϕ(p) + o(ρn−1

j )
)
+ ψ(j) + εn−1

j PK(Ep, (Ω \Rj)/εj)

− εn−1
j LK(Ep ∩ (Ω \Rj)

c/εj , E
c
p ∩ (Ω \Rj)/εj)

+ εn−1
j LK(Ep ∩ Ω/εj , E

c
p ∩ Ωc/εj).

(8.33)

Furthermore, by inspection of the proof of (8.13) in Lemma 8.3, we infer that

lim
j→+∞

εn−1
j PK

Ep,Ω/εj \

 ⋃
ρjQ̃∈Bj

ρj
εj
Q̃


⩽ lim

j→+∞
c(Hn−1(Ω ∩ ∂Ip)−Njρ

n−1 + εn−1
j (Njρjε

−1
j )2s2−1−α) = 0.

(8.34)

Additionally, thanks to Lemma 7.1, we also have

(8.35) lim sup
j→+∞

εn−1
j LK(Ep ∩ (Ω \Rj)

c/εj , E
c
p ∩ (Ω \Rj)/εj) + εn−1

j LK(Ep ∩ Ω/εj , E
c
p ∩ Ωc/εj) = 0.

Using (8.31), (8.32), (8.34), and (8.35) in (8.33), we conclude that

lim
j→+∞

εn−1
j F (Ep,Ω/εj) = Hn−1(Ω ∩ ∂Ip)ϕ(p). □

9. Proof of the Γ-lim inf inequality

Here, we present a proof of the Γ− lim inf inequality in Theorem 1.13-(i). To this purpose, let E ⊆
Rn, and let {Eε}ε be a sequence of sets such that Eε → E in L1

loc(Rn).
Moreover, up to extracting a subsequence, we suppose that

lim inf
ε→0

Fε(Eε,Ω) = lim
ε→0

Fε(Eε,Ω) < +∞,

otherwise the result is trivial. In particular, without loss of generality, we assume that

sup
ε

Fε(Eε,Ω) < +∞,

Now, following the ideas of [BF94] (see also [BFM98,AB98b,CT09]), we consider the Radon measure

(9.1) λε(·) :=
∫∫∫

(·)∩Ω×Rn

χEε(x)χEc
ε
(y)Kε(x, y) dx dy +

∑
ℓ∈Zn

ε(ℓ+Q)⊆Ω

δεℓ(·)
∫∫

Eε∩ε(ℓ+Q)
gε(x)dx,
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where, for any set A ⊆ Rn,

δεℓ(A) :=

{
0, if εℓ ̸∈ A,

1, if εℓ ∈ A.

By Proposition 7.3, we have that λε ⩾ 0. Moreover, the total mass of λε is bounded uniformly in ε.
Indeed, by construction, we have that

λε(Rn) = λε(Ω) =

∫∫
Ω×Rn

χEε(x)χEc
ε
(y)Kε(x, y) dx dy +

∫
Eε∩Q(Ω)ε

gε(x)dx

= Eε(Eε,Ω) ⩽ Fε(Eε,Ω) ⩽ sup
ε

Fε(Eε,Ω) < +∞,

where Eε si defined as in (1.20).
Therefore, there exists a positive measure λ such that

λε ⇀
∗ λ, i.e. λε converges weakly∗ to λ as measures

and λ(A) ⩽ lim inf
ε→0

λε(A), for every set A such that λ(∂A) = 0.

In particular, we have that

(9.2) λ(Ω) ⩽ lim inf
ε→0

λε(Ω) ⩽ lim inf
ε→0

Fε(Eε,Ω).

Then, let x be a regular point of E, namely a point x ∈ ∂E with (n − 1)-density 1 and such that
the blow-up of E around x converges to {(x− x) · νE(x) > 0}, e.g.

lim
r→0

Hn−1(∂E ∩Br(x))

ωn−1rn−1
= 1,

and lim
r→0+

r−n

∫
B2r(x)

|χE − χ{(x−x)·νE(x)>0}|dx = 0,

where ωn−1 := Hn−1(Bn−1
1 ). We consider the Radon-Nikodyn derivative of λ with respect to the (n−

1)-dimensional Hausdorff measure at x

dλ

dHn−1
(x) := lim

r→0

λ(Br(x))

Hn−1(∂E ∩Br(x))
= lim

r→0

λ(Br(x))

ωn−1rn−1
,

and observe that, in light of (9.2) and the Besicovitch derivation theorem (see [AFP00, Theorem 5.52]),
Theorem 1.13-(i) will follow if we show that

(9.3)
dλ

dHn−1
(x) ⩾ ϕ(νE(x)).

At this stage, let us consider subsequences {εj}j , {rj}j , and {ηj := εj/rj}j such that

lim
j→+∞

λεj (Brj (x))

ωn−1r
n−1
j

=
dλ

dHn−1
(x)

lim
j→+∞

r−n
j

∫
B2rj

(x)
|χE − χ{(x−x)·νE(x)>0}|dx = 0,

and lim
j→+∞

ηj = 0.

(9.4)

In what follows, in order to lighten the notation, we will write Ej := Eεj , λεj := λj , and ν := νE(x).
We now focus on proving (9.3), that now is

lim
j→+∞

λj(Brj (x))

ωn−1r
n−1
j

⩾ ϕ(ν).
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To achieve this, let us introduce, for every set A, the notation A′ := (A − x)/rj . Thus, taking
advantage of the scaling properties of λj , we obtain

λj(Brj (x))

rn−1
j

=r1−n
j

(∫∫
Brj (x)×Rn

χEj (x)χEc
j
(y)Kεj (x, y) dx dy +

∫
Ej∩Q(Brj (x))εj

gεj (x)dx

)

=

∫∫
B1×Rn

χE′
j
(x)χE′c

j
(y)Kηj (x+ x/rj , y + x/rj) dx dy

+

∫
E′

j∩Q′(Brj (x))εj

gηj (x+ x/rj)dx,

(9.5)

where

Q′(Brj (x))εj :=
(
Q(Brj (x))εj − x

)
/rj =

⋃{
εj(k +Q)− x

rj
s.t. k ∈ Zn, εj(k +Q) ⊆ Brj (x)

}
.

We also set A′′ := A′ + ηj{x/εj}, where {x}j := {xj} = xj − ⌊xj⌋ is the fractional part of the j-th
component of a point x. Then, (9.5) boils down to

λj(Brj (x))

rn−1
j

=

∫∫
B1(ηj{x/εj})×Rn

χE′′
j
(x)χE′′c

j
(y)Kηj (x, y) dx dy +

∫
E′′

j ∩Q′′(Brj (x))εj

gηj (x)dx

=

∫∫
B′′

j ×Rn

χE′′
j
(x)χE′′c

j
(y)Kηj (x, y) dx dy +

∫
E′′

j ∩Q′′(Brj (x))εj

gηj (x)dx,

where, to be consistent with our notation, we wrote B′′
j := B1(ηj{x/εj}). Moreover, observe that

Q′′(Brj (x))εj =
⋃{

εj(k +Q)− x

rj
+ ηj

{
x

εj

}
s.t. k ∈ Zn, εj(k +Q) ⊆ Brj (x)

}
=
⋃{

ηj

(
k −

⌊
x

εj

⌋
+Q

)
s.t. k ∈ Zn, ηj

(
k −

⌊
x

εj

⌋
+Q

)
⊆ B′′

j (x)

}
= Q(B′′

j )ηj .

Hence, it follows from the last two equations in display that

(9.6)
λj(Brj (x))

ωn−1r
n−1
j

=
Eηj (E

′′
j , B

′′
j )

ωn−1
.

Furthermore, since ηj → 0 and the fractional part is a bounded function, we deduce from (9.4) that

lim
j→+∞

∫
B3/2

|χE′′
j
− χIν |dx

⩽ lim
j→+∞

∫
B3/2

|χE′′
j
− χ{(x−ηj{x/εj})·ν>0}|dx+ lim

j→+∞

∫
B3/2

|χ{(x−ηj{x/εj})·ν>0} − χIν |dx

= 0.

(9.7)

In particular, χE′′
j
→ χIν a.e. in B3/2 (up to a subsequence).

Now, let Eν be a planelike minimizer for J in direction ν constructed combining Theorem 1.4,
Theorem 1.9, and Corollary 1.12. Then, let us define sets

(9.8) Fj := (ηjEν \ Q(B′′
j )1) ∪ (E′′

j ∩Q(B′′
j )1).

Since Fj \ Q(B′′
j )1 = ηjEν \ Q(B′′

j )1, by Theorem 1.9, Remark 1.8 and Corollary 8.5, we infer that

(9.9) Fηj (Fj , B
′′
j ) ⩾ Fηj (ηjEν , B

′′
j ) → Hn−1(∂Iν ∩B1)ϕ(ν) = ωn−1ϕ(ν),

as j → +∞.
Also, observe that

(9.10) Eηj (E
′′
j , B

′′
j )− Fηj (Fj , B

′′
j ) ⩾ −LKηj

(Fj ∩B′′
j , F

c
j ∩ (B′′

j )
c).

HTTPS://RESEARCH-REPOSITORY.UWA.EDU.AU/EN/PERSONS/SERENA-DIPIERRO
HTTPS://RESEARCH-REPOSITORY.UWA.EDU.AU/EN/PERSONS/ENRICO-VALDINOCI


NON-LOCAL PLANELIKE MINIMIZERS 33

Figure 2. The competitor Fj as in (9.8) that produces the correct Γ− lim inf inequality.

Since both E′′
j → Iν and ηjEν → Iν a.e. in Rn, thanks to Lemma 7.1, we have that

(9.11) lim
j→∞

LKηj
(Fj ∩B′′

j , F
c
j ∩ (B′′

j )
c) = 0.

Therefore, putting together (9.9), (9.10), and (9.11), we find that

lim inf
j→+∞

Eηj (E
′′
j , B

′′
j ) ⩾ lim

j→+∞
Fηj (ηjEν , B

′′
j )− LKηj

(Fj ∩B′′
j , F

c
j ∩ (B′′

j )
c) = ωn−1ϕ(ν).

This, together with (9.6), entails the desired result.

10. Continuity of the stable norm ϕ

In this section, we discuss the continuity of the stable norm ϕ. This result is a version of [CT09,
Corollary A.4] covering our setting, which will play a crucial role in proving the Γ− lim sup inequality
(see Theorem 1.13-(ii)) in Section 11.

Remark 10.1. Before presenting our result, we point out that, in [CT09, Corollary A.4], the authors
claim that the same argument of [CdlL01, Lemma 10.2] suffices to prove the convexity of the stable
norm ϕ. However, because of—plausibly—a typo in the proof of the latter, such argument cannot be
directly applied in our context.

Proposition 10.2. ϕ : Sn−1 → R is a continuous function.

Proof. Let p, q ∈ Sn−1 and define θ as the angle between p and q (i.e. θ is defined through p ·q = cos θ),
so that if Rθ ∈ SO(n) denotes a rotation of angle θ, then p = Rθq.

The continuity of ϕ will follow if we show the existence of a function ψ such that

|ϕ(q)− ϕ(p)| ⩽ ψ(θ) and lim
θ→0

ψ(θ) = 0.

To this purpose, we use Theorem 1.13-(i) (notice indeed that εRθEq converges to Ip as ε→ 0) and
Proposition 8.1 to obtain

lim inf
ε→0

Fε(εRθEq, Q
p) ⩾ Fϕ(Ip, Qp) = ϕ(p) = lim

ε→0
Fε(εEp, Q

p).
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From this and the fact that K is rotation invariant (see (1.2)), it follows that

ϕ(q)− ϕ(p) = lim
ε→0

(
Fε(εEq, Q

q)− Fε(εEp, Q
p)
)

⩾ lim inf
ε→0

(
Fε(εEq, Q

q)− Fε(εRθEq, Q
p)
)

= lim inf
ε→0

εn−1

(∫
Eq∩Q(Qq/ε)1

g −
∫
RθEq∩Q(Qp/ε)1

g

)
.

(10.1)

We now recall that

∂Eq ⊆ {|x · q| ⩽M} =: Sq
M

and hence ⋃{
k +Q s.t. k ∈ Zn and (k +Q) ∩ ∂Eq ̸= ∅

}
⊆ Sq

M+
√
n
.

Thus, in light of (1.1), we find that∫
Eq∩Q(Qq/ε)1

g −
∫
RθEq∩Q(Qp/ε)1

g =

∫
Eq∩Q(Qq/ε)1∩Sq

M+
√
n

g −
∫
RθEq∩Q(Qp/ε)1∩RθS

q

M+
√
n

g.

Therefore, using also a Hölder inequality in (10.1) and observing that RθS
q
M+

√
n
= Sp

M+
√
n
, we obtain

ϕ(q)− ϕ(p)

⩾ lim inf
ε→0

(
−εn−1∥g∥L∞(Rn)

∣∣∣(Eq ∩Q(Qq/ε)1 ∩ Sq
M+

√
n

)
∆
(
RθEq ∩Q(Qp/ε)1 ∩RθS

q
M+

√
n

)∣∣∣)
⩾ lim inf

ε→0

(
−εn−1∥g∥L∞(Rn)

∣∣∣(Eq ∩Q(Qq/ε)1 ∩ Sq
M+

√
n

)
∆
(
RθEq ∩Q(Qp/ε)1 ∩ Sp

M+
√
n

)∣∣∣) .
Now, observe that, arguing as in (8.25), we have that∣∣∣(Eq ∩Q(Qq/ε)1 ∩ Sq

M+
√
n
)∆(RθEq ∩Q(Qp/ε)1 ∩ Sp

M+
√
n
)
∣∣∣

⩽

∣∣∣∣[Eq ∩ Sq
M+

√
n
∩ 1

ε
Cq]∆[RθEq ∩ Sp

M+
√
n
∩ 1

ε
Cp]

∣∣∣∣+ ε1−nζ(ε),

where Cq is the (unitary) square-based cylinder with axis q and

ε1−nζ(ε) :=
∣∣∣Sq

M+
√
n
∩ Sp

M+
√
n
∩RθE

q ∩ [Cp/ε \ Q(Qp/ε)1]
∣∣∣

+
∣∣∣Sq

M+
√
n
∩ Sp

M+
√
n
∩ Eq ∩ [Cq/ε \ Q(Qq/ε)1]

∣∣∣ ,
with ζ(ε) → 0, as ε→ 0.

Thus,

ϕ(q)− ϕ(p)

⩾ lim inf
ε→0

−εn−1∥g∥∞
∣∣∣∣[Eq ∩ Sq

M+
√
n
∩ 1

ε
Cq]∆[RθEq ∩ Sp

M+
√
n
∩ 1

ε
Cp]

∣∣∣∣ .
Let us define

ψ(θ) := lim sup
ε→0

εn−1

∣∣∣∣[Eq ∩ Sq
M+

√
n
∩ 1

ε
Cq]∆[RθEq ∩ Sp

M+
√
n
∩ 1

ε
Cp]

∣∣∣∣ ,
so that

ϕ(q)− ϕ(p) ⩾ −∥g∥∞ψ(θ).
Moreover, notice that ψ(θ) → 0, as θ → 0 (namely as p→ q).

Interchanging the roles of p and q, we obtain again that

ϕ(p)− ϕ(q) ⩾ lim inf
ε→0

−∥g∥∞
∣∣∣[Eq ∩ Sp

M+
√
n
∩ Cp]∆[R−θ ∩ Sq

M+
√
n
∩ Cq]

∣∣∣
= −∥g∥∞|JRθ|ψ(θ) = −∥g∥∞ψ(θ),

and hence

|ϕ(q)− ϕ(p)| ⩽ ∥g∥∞ψ(θ),
as desired. □
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Now, we define the 1-homogeneous extension of ϕ as

(10.2) ϕ̃(p) :=

{
|p|ϕ

(
p
|p|

)
, if p ̸= 0,

0, if p = 0.

As a byproduct of Proposition 10.2, we obtain that also ϕ̃ is continuous (in the whole Rn).

Corollary 10.3. ϕ̃ : Rn → R is a continuous function.

Proof. Let q ∈ Rn. Then, it follows from the homogeneity of ϕ̃ and Proposition 10.2 that

lim
p→q

ϕ̃(p) = lim
p→q

|p|ϕ
(
p

|p|

)
= lim

p→q

(
(|p| − |q|)ϕ

(
p

|p|

)
+ |q|ϕ

(
p

|p|

))
= lim

p→q

(
(|p| − |q|)ϕ

(
p

|p|

)
+ |q|ϕ

(
q

|q|

))
= lim

p→q

(
(|p| − |q|)ϕ

(
p

|p|

))
+ ϕ̃(q).

Since ϕ(p/|p|) is bounded, we conclude that

lim
p→q

ϕ̃(p) = ϕ̃(q),

showing the continuity of ϕ̃ at q. □

11. Proof of the Γ-lim sup inequality

This section is devoted to proving Γ-lim sup inequality in Theorem 1.13-(ii). Our argument adapts
to the setting under consideration here the ideas of [CdlL01,CT09], in which the result follows from
a standard polyhedral approximation taking advantage of the existence of planelike minimizers. For
this, we need the following technical result.

Lemma 11.1. Let E ⊆ Rn be such that E ∩ Ω is a polyhedron. Then, there exists a sequence of
sets {Eε}ε such that

lim sup
ε→0

Fε(Eε,Ω) ⩽ Fϕ(E,Ω).

Proof. Since E ∩Ω is a polyhedron, there exist points xj ∈ ∂E ∩Ω and directions pj ∈ Sn−1, with j =
1, . . . , N , for some N ∈ N, such that

∂E ∩ Ω =
N⋃
j=1

(xj + Ipj ) ∩ Ω.

Here above and in the rest of the proof, the notation in (7.1) for Ipj is used.
Also, there are N disjoint Lipschitz domains Ωj such that

Ω =
N⋃
j=1

Ωj and (xj + Ipj ) ∩ Ω ⊆ Ωj .

Now, for any ε > 0, we define

(11.1) Eε := (E \ Ω) ∩
N⋃
j=1

(
Ωj ∩

(
xj + εEpj

))
,

where, for every j = 1, . . . , N , Epj is a planelike minimizer constructed as in Theorem 1.4 (see Figure 3).
Therefore, we obtain

Fε(Eε,Ω) ⩽
N∑
j=1

Fε(xj + εEpj ,Ωj) +

∫
Eε∩(Q(Ω)ε\

⋃N
j=1 Q(Ωj)ε)

gε(x) dx

+

N∑
j=1

LKε(εEpj ∩ Ωj , E
c
ε ∩ Ωc

j) +

N∑
j=1

LKε(εE
c
pj ∩ Ωj , Eε ∩ Ωc

j)

−
N∑
j=1

LKε(εEpj ∩ Ωj , εE
c
pj ∩ Ωc

j)−
N∑
j=1

LKε(εE
c
pj ∩ Ωj , εEpj ∩ Ωc

j).

(11.2)
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Figure 3. The planelike approximation of the polygonal set E as in (11.1).

By Corollary 8.5, for every j ∈ {1, . . . , N}, we have that

(11.3) lim
ε→0

Fε(xj + εEpj ,Ωj) = ϕ(pj)Hn−1
(
Ωj ∩ (xj + ∂Ipj )

)
.

Furthermore,∫
Eε∩(Q(Ω)ε\

⋃N
j=1 Q(Ωj)ε)

gε(x) dx ⩽ εn−1

∫
(Eε/ε)∩(Q(Ω/ε)1\

⋃N
j=1 Q(Ωj/ε)1)

|g(x)| dx

= εn−1
N∑
j=1

∫
(xj/ε+Epj )∩(Ωj/ε)∩(Q(Ω/ε)1\Q(Ωj/ε)1

|g(x)| dx

⩽ 2(M +
√
n)∥g∥L1(Q)ε

n−1
N∑
j=1

(
ε1−nHn−1(Ωj ∩ ∂Ipj )− ⌊ε1−nHn−1(Ωj ∩ ∂Ipj )⌋

)
.

Thus,

(11.4) lim sup
ε→0

∫
Eε∩(Q(Ω)ε\

⋃N
j=1 Q(Ωj)ε)

gε(x) dx ⩽ 0.

Moreover, thanks to Lemma 7.1, we infer that

lim
ε→0

N∑
j=1

LKε(εEpj ∩ Ωj , E
c
ε ∩ Ωc

j) +
N∑
j=1

LKε(εE
c
pj ∩ Ωj , Eε ∩ Ωc

j)

−
N∑
j=1

LKε(εEpj ∩ Ωj , εE
c
pj ∩ Ωc

j)−
N∑
j=1

LKε(εE
c
pj ∩ Ωj , εEpj ∩ Ωc

j) = 0,

(11.5)

for all j ∈ {1, . . . , N}.
Hence, gathering (11.2), (11.3), (11.4), and (11.5), we conclude that

lim sup
ε→0

Fε(Eε,Ω) ⩽
N∑
j=1

ϕ(pj)Hn−1
(
Ωj ∩ (xj + ∂Ipj )

)
=

∫
∂E∩Ω

ϕ(νE) dHn−1.

as desired. □

Proof of Theorem 1.13-(ii). By a standard approximation argument, there exists a sequence of sets {Ej}j
such that Ej ∩ Ω is a polyhedron, for every j, and

lim
j→+∞

Hn−1(Ej ∩ Ω) = Per(E,Ω).
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Therefore, recalling that (the 1-homogeneous extension of) ϕ is continuous by Corollary 10.3, we
deduce from [AFP00, Theorem 2.39] that

lim
j→+∞

Fϕ(Ej ,Ω) = Fϕ(E,Ω).

Using Lemma 11.1 and taking a diagonal sequence, we construct a sequence of sets {Eεj}j such

that Eεj → E in L1
loc(Rn), and

lim sup
j→+∞

Fεj (Eεj ,Ω) ⩽ Fϕ(E,Ω),

showing Theorem 1.13-(ii). □

Remark 11.2. We point out that, in light of Lemma 7.1, one can equivalently consider ener-
gies Fε((·),Ω), Eε((·),Ω), or even Lε((·),Ω) := LKε((·) ∩ Ω, (·)c ∩ Ω) in Theorem 1.13. Indeed, since
the rescaled planelike εEp converges to the straight line Ip, as ε → 0, such limit crosses transversely
any Lipschitz domain. Therefore, the energy contribution due to the interactions with the exterior
of Ω in the limit.

As a corollary of the Γ-convergence, we improve Proposition 10.2. Indeed, since a Γ-limit is lower
semi-continuous by construction, we infer that the stable norm must be convex.

Recall the definitions of the stable norm ϕ : Sn−1 → R in (1.21), and of its homogenization ϕ̃
in (10.2). Then, the following holds true:

Corollary 11.3. The function ϕ̃ : Rn → R is convex.

Appendix A. Norms subject to short-range interactions

We point out a useful equivalence of norms when a kernel is restricted to close-by interactions (see
e.g. [ADPL+26, Lemma 2.1] for related results). For the rest of this section, let s ∈ (0, 1/2).

Lemma A.1. There exists C > 0, depending only on δ, n, and s, such that, for all u : Rn → R such
that ∫

Q
u(x) dx = 0,

we have that ∫∫
Q×Q

|u(x)− u(y)|
|x− y|n+2s

dx dy ⩽ C

∫∫
(Q×Q)∩{|x−y|<δ}

|u(x)− u(y)|
|x− y|n+2s

dx dy.

Proof. Up to renaming constants, the desired result follows if we prove that∫∫
(Q×Q)∩{|x−y|⩾δ}

|u(x)− u(y)|
|x− y|n+2s

dx dy ⩽ C

∫∫
(Q×Q)∩{|x−y|<δ}

|u(x)− u(y)|
|x− y|n+2s

dx dy.

Moreover, since∫∫
(Q×Q)∩{|x−y|⩾δ}

|u(x)− u(y)|
|x− y|n+2s

dx dy ⩽
1

δn+2s

∫∫
Q×Q

(
|u(x)|+ |u(y)|

)
dx dy

=
2

δn+2s

∫
Q
|u(x)| dx,

it suffices to show that ∫
Q
|u(x)| dx ⩽ C

∫∫
(Q×Q)∩{|x−y|<δ}

|u(x)− u(y)|
|x− y|n+2s

dx dy.

We argue for the sake of contradiction and suppose that this is not true. Namely, we suppose that
there exists a sequence of functions uj : Rn → R such that

(A.1)

∫
Q
uj(x) dx = 0

and

(A.2) 1 =

∫
Q
|uj(x)| dx > j

∫∫
(Q×Q)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s

dx dy.
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We decomposeQ as the disjoint union of cubesQ1, . . . , QN of side less than δ
2 and we deduce from (A.2)

that, for all ℓ ∈ {1, . . . , N},

(A.3)
1

j
>

∫∫
Qℓ×(Qℓ)δ

(Q×Q)∩{|x−y|<δ}

|uj(x)− uj(y)|
|x− y|n+2s

dx dy ⩾
∫∫

Qℓ×Qℓ

|uj(x)− uj(y)|
|x− y|n+2s

dx dy,

where
(Qℓ)δ := {x ∈ Rn s.t. dist(x,Qℓ) < δ}.

Then (see e.g. [DNPV12, Theorem 7.1]), the sequence uj is precompact in L1(Qℓ) and consequently,
up to a subsequence, uj converges to some function u0 in L1(Qℓ) for all ℓ ∈ {1, . . . , N}, and thus
in L1(Q) and a.e. in Q.

Thus, from (A.3) and Fatou Lemma,∫∫
Qℓ×Qℓ

|u0(x)− u0(y)|
|x− y|n+2s

dx dy = 0,

which implies that u0 is constant. As a result, since we have from (A.1) that∫
Q
u0(x) dx = 0,

we conclude that u0 is the null function.
However, according to (A.2),

1 = lim
j→+∞

∫
Q
|uj(x)| dx =

∫
Q
|u0(x)| dx,

providing the desired contradiction. □

Appendix B. Uniform density estimates for
(
Λ, 2s1n

)
-minimizers of PK

In this section, we revisit the proof of [DVV, Theorem 2.2] adapting it to the setting under consid-
eration here. The precise statement goes as follows:

Proposition B.1. Let K satisfy (1.2), (1.3), (1.4), and (1.5) and let Ω ⊆ Rn be a Lipschitz domain.
Then, there exists Λ0 > 0 such that for all Λ ∈ (0,Λ0] the following statement holds true.
Let E be a

(
Λ, 2s1n

)
-minimal set for PK in Ω (in the sense of Definition 5.2).

Then, there exists a constant c0 ∈ (0, 1), depending only on n, s1, and κ2, such that, for any x0 ∈
(∂E) ∩ Ω and r ∈ (0,min{δ/4, dist(x0, ∂Ω)}),
(B.1) c0r

n ⩽ |E ∩Br(x0)| ⩽ (1− c0)r
n.

For the proof of Proposition B.1, we employ the following auxiliary results in Lemmata B.2 and B.3.

Lemma B.2 (Lemma 7.1, [Giu03]). Let β ∈ (0, 1), N > 1, and M > 0. Let {xk}k be a decreasing
sequence in R such that

x1−β
k+1 ⩽ NkMxk.

If x0 ⩽ N
1
β
− 1

β2M
− 1

β , then xk → 0 as k → +∞.

Lemma B.3 (Isoperimetric lower bound for the kernel K). Suppose that K satisfy (1.2), (1.3), (1.4),
and (1.5).

Then, there exists a positive constant C, depending on n, s1, κ1, and δ, such that

(B.2) PK(Br) ⩾ C

{
rn−2s1 , if 0 < r ⩽ δ/4,

rn−1, if r > δ/4.

Proof. To show (B.2), let us start by assuming 0 < r ⩽ δ/4. In this case, by (1.4) and the scaling
properties of the kernel |x|−n−2s1 , we have that

PK(Br) =

∫∫
Br×Bc

r

K(x, y) dx dy ⩾
∫∫

Br×(B2r\Br)
K(x, y) dx dy

⩾ κ1

∫∫
Br×(B2r\Br)

dx dy

|x− y|n+2s1

= κ1r
n−2s1

∫∫
B1×(B2\B1)

dx dy

|x− y|n+2s1
=: C1(n, s1, κ1)r

n−2s1 .

(B.3)
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Also, if r > δ/4, let us consider the covering {Bδ/8(x0)}x0∈∂Br of ∂Br. By compactness, we extract
a finite sub-covering B. In particular,

(B.4) ♯(B) = c
(r
δ

)n−1
,

for some constant c > 0 depending only on n. Thus, we have that

PK(Br) =

∫∫
Br×Bc

r

K(x, y) dx dy ⩾
∑

Bδ/8(x0)∈B

∫∫
(Br∩Bδ/8(x0))×(Bc

r∩Bδ/8(x0))
K(x, y) dx dy

⩾ κ1
∑

Bδ/8(x0)∈B

∫∫
(Br∩Bδ/8(x0))×(Bc

r∩Bδ/8(x0))

dx dy

|x− y|n+2s1

⩾ κ1δ
n−2s1

∑
Bδ/8(x0)∈B

∫∫
(B8r/δ∩B1(8x0/δ))×(Bc

8r/δ
∩B1(8x0/δ))

dx dy

|x− y|n+2s1
.

(B.5)

We now use the notation

xδ :=
8x0
δ

and we claim that

(B.6) (∂B8r/δ) ∩B1(xδ) ⊆
{
−1

4
< (x− xδ) ·

x0
|x0|

⩽ 0

}
.

To check this, we pick x ∈ ∂B8r/δ ∩B1(xδ) and we observe that

1 > |x− xδ|2 = |x|2 + |xδ|2 − 2x · xδ =
(
8r

δ

)2

+

(
8

δ

)2

|x0|2 −
16x · x0

δ
= 2

(
8r

δ

)2

− 16x · x0
δ

and accordingly

(B.7) x · x0
|x0|

=
δ

16r

16x · x0
δ

>
δ

16r

[
2

(
8r

δ

)2

− 1

]
=

8r

δ
− δ

16r
.

Moreover,

(B.8) (x− xδ) ·
x0
|x0|

= x · x0
|x0|

− |xδ| = x · x0
|x0|

− 8|x0|
δ

= x · x0
|x0|

− 8r

δ
,

from which we arrive at

(B.9) (x− xδ) ·
x0
|x0|

⩽ |x| − 8r

δ
= 0.

Also, from (B.7) and (B.8),

(x− xδ) ·
x0
|x0|

> − δ

16r
> −1

4
.

Combining this and (B.9), we obtain (B.6), as desired.
It thereby follows from (B.6) that∫∫

(B8r/δ∩B1(xδ))×(Bc
8r/δ

∩B1(xδ))

dx dy

|x− y|n+2s1

⩾
∫∫

({
(x−xδ)·

x0
|x0|

>0
}
∩B1(xδ)

)
×
({

(y−xδ)·
x0
|x0|

<− 1
4

}
∩B1(xδ)

) dx dy

|x− y|n+2s1
.

Plugging this information into (B.5), we obtain that

PK(Br) ⩾ κ1δ
n−2s1

∑
Bδ/8(x0)∈B

∫∫
({

(x−xδ)·
x0
|x0|

>0
}
∩B1(xδ)

)
×
({

(y−xδ)·
x0
|x0|

<− 1
4

}
∩B1(xδ)

) dx dy

|x− y|n+2s1
.
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By the translation and rotation invariance of the fractional kernel |x|−n−2s1 and (B.4), we infer that

PK(Br) ⩾ κ1δ
n−2s1

∑
Bδ/8(x0)∈B

∫∫
(B1∩{xn>0})×(B1∩{yn<− 1

4})
dx dy

|x− y|n+2s1

⩾ cκ1δ
1−2s1rn−1

∫∫
(B1∩{xn>0})×(B1∩{yn<−1/4})

dx dy

|x− y|n+2s1

=: C2(n, κ1, s1, δ)r
n−1.

(B.10)

We conclude the proof from (B.3) and (B.10) by setting C := min{C1, C2}. □

Proof of Proposition B.1. Let us recall that, by definition, if E is a
(
Λ, 2s1n

)
-minimal set, for some Λ ⩾

0, then

(B.11) PK(E,Ω) ⩽ PK(F,Ω) + Λ|E∆F |1−
2s1
n ,

for every F such that F \ Ω = E \ Ω.
Let x0 ∈ (∂E) ∩ Ω. Up to a translation, we suppose that x0 coincides with the origin.
Define Ar := E ∩ Br, with r ∈ (0, δ/4), where δ is as in (1.4), and observe that Ar ⊆ Ω. Also,

let µ(r) := |Ar| and notice that, by the co-area formula, µ′(r) = Hn−1(E ∩ ∂Br).

Our strategy now is to provide an estimate for µ1−
2s1
n (r) in terms of µ(r). For this, let us con-

sider ρr ∈ (0, r) such that |Ar| = ωnρ
n
r . Then, observe that, thanks to Lemma B.3 and [CN18, Propo-

sition 3.1],

(B.12) ∥χAr∥L
n

n−2s1 (Rn)
= |Ar|1−

2s1
n ⩽ C PK(Bρr) ⩽ C PK(Ar) = CLK(Ar, A

c
r),

up to renaming C, and we stress that C depends only4 on n, s1, and κ1.
Now, since

LK(Ar, A
c
r) = LK(Ar, E ∩Ac

r) + LK(Ar, E
c),

it follows from the subsolution property in [DVV, Definition 1.2] that

(B.13) LK(Ar, A
c
r) ⩽ 2LK(Ar, E ∩Ac

r) + Λµ1−
2s1
n (r) ⩽ 2LK(Ar, B

c
r) + Λµ1−

2s1
n (r).

Moreover, by the co-area formula and (1.4), we have that

LK(Ar, B
c
r) =

∫∫
Ar×Bc

r

K(x, y)dx dy ⩽ κ2

∫∫
Ar×Bc

r

dy dx

|x− y|n+2s1
⩽ C

∫
Ar

(∫ +∞

r−|x|

dz

z2s1+1

)
dx

⩽ C

∫
Ar

dx

(r − |x|)2s1
⩽ C

∫ r

0

µ′(ρ)

(r − ρ)2s1
dρ,

for some C > 0, depending on n, s1, and κ2 and possibly changing from line to line.
Plugging this into (B.13), we obtain that

LK(Ar, A
c
r) ⩽ C

∫ r

0

µ′(ρ)

(r − ρ)2s1
dρ+ Λµ1−

2s1
n (r).

From the last inequality and (B.12) we deduce that

(B.14) µ1−
2s1
n (r) = ∥χAr∥L

n
n−2s1 (Rn)

⩽ C

(∫ r

0

µ′(ρ)

(r − ρ)2s1
dρ+ Λµ1−

2s1
n (r)

)
,

up to renaming C.
Furthermore, we assume that Λ is so small that

CΛ ⩽
1

2
.

Using this into (B.14), we thus obtain that

µ1−
2s1
n (r) ⩽ C

∫ r

0

µ′(ρ)

(r − ρ)2s1
dρ.

4Notice indeed that, once we assume that ρr < δ/4, we can select C := C1 given by (B.3) in Lemma B.3. Thus, the
constant C in (B.12) is independent of δ.
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Hence, integrating the latter inequality in r ∈ (0, t), we deduce that, for all t ∈ (0, δ/4],∫ t

0
µ1−

2s1
n (r) dr ⩽

∫ t

0

(
C

∫ r

0

µ′(ρ)

(r − ρ)2s1
dρ

)
dr

= C

∫ t

0

(
µ′(ρ)

∫ t

ρ

dr

(r − ρ)2s1

)
dρ

= C

∫ t

0
µ′(ρ)(t− ρ)1−2s1 dρ

⩽ Cµ(t) t1−2s1 .

(B.15)

Now, we set

c0 := 2
n

2s1
− n2

(2s1)
2 (4C)

− n
2s1

and we claim that

(B.16) µ(t) ⩾ c0t
n for all t ∈ (0, δ/4].

To prove this, we argue by contradiction and assume that there exists t0 ∈ (0, δ/4] such that

(B.17) µ(t0) < c0t
n
0 .

We define tk := t0
2 + t0

2k+1 . Then, using (B.15), we have that

t0
2k+2

µ1−
2s1
n (tk+1) = (tk − tk+1)µ

1− 2s1
n (tk+1) ⩽

∫ tk

tk+1

µ1−
2s1
n (r) dr ⩽ Cµ(tk)t

1−2s1
k ⩽ Cµ(tk)t

1−2s1
0 .

Notice that, by continuity,

lim
k→+∞

µ(tk) = µ

(
t0
2

)
= |E ∩Bt0/2| > 0.

Therefore, using Lemma B.2 with xk := µ(tk), β := s/n, M := 4Ct−2s1
0 , and N := 2, we find that

µ(t0) > N
1
β
− 1

β2M
− 1

β = 2
n

2s1
− n2

(2s1)
2
(
4Ct−2s1

0

)− n
2s1 .

Thus, thanks to (B.17) we deduce that

c0t
n
0 > µ(t0) > 2

n
2s1

− n2

(2s1)
2
(
4Ct−2s1

0

)− n
2s1 = 2

n
2s1

− n2

(2s1)
2 (4C)

− n
2s1 tn0 = c0t

n
0 ,

which gives the desired contradiction and proves (B.16).
So, (B.16) yields

|E ∩Br| ⩾ c0r
n for all r ∈ (0, δ/4],

proving the first inequality in (B.1).
Moreover, if E is an almost minimal set, then also Ec is almost minimal . Thus, we exploit (B.16)

replacing E with Ec, obtaining that, for r sufficiently small,

|Ec ∩Br| ⩾ c0r
n,

from which we infer the second inequality in (B.1). □

Appendix C. Behavior of PK in large domains

Here, we show that if Ω is a Lipschitz domain and

ΩR := {x ∈ Rn s.t. x/R ∈ Ω},
then PK(ΩR) is bounded by Rn−1.

First, let us consider the space of Lipschitz function on Bn−1
ρ , for some ρ > 0,

Lip(Bn−1
ρ ) := {f : Bn−1

ρ → R is Lipschitz-continuous},
endowed with the norm

∥f∥Lip(Bn−1
ρ ) := ∥f∥C0(Bn−1

ρ ) + [f ]C0(Bn−1
ρ ),

where

[f ]C0(Bn−1
ρ ) := sup

x′,y′∈Bn−1
ρ

x′ ̸=y′

|f(x′)− f(y′)|
|x− y′|
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denotes the usual Lipschitz seminorm.
Then, we recall the following notion of Lipschitz set (see [HP18, Definition 2.4.5]).

Definition C.1. We say that an open set Ω ⊂ Rn has Lipschitz boundary (or that Ω is a Lipschitz
set) if there exist rΩ > 0, LΩ > 0, and αΩ > 0 such that for every x0 ∈ ∂Ω there exist a rotation Rθx0

(of an angle θx0 ∈ [0, 2π)) and a Lipschitz function ϕx0 ∈ Lip(Bn−1
rΩ

) such that:

i) [ϕx0 ]Lip(Bn−1
rΩ

) ⩽ LΩ;

ii) Rθx0
Ω(−x0) ∩

(
Bn−1

rΩ
× (−αΩ, αΩ)

)
=
{
(x′, xn) s.t. x

′ ∈ Bn−1
rΩ

and xn ∈ (−αΩ, ϕx0(x
′))
}
;

iii) ∂
(
Rθx0

Ω(−x0)
)
∩
(
Bn−1

rΩ
× (−αΩ, αΩ)

)
=
{
(x′, ϕx0(x

′)) s.t. x′ ∈ Bn−1
rΩ

}
.

The main result of this section is the following:

Proposition C.2. There exist positive constants η ∈ (0, 1) and C = C(n, s1, s2, κ2, δ, η,Ω) such that

PK(ΩR) ⩽ CRn−1,

for every R ⩾ 1 large enough.

The proof relies on the following one-dimensional observation:

Lemma C.3. Let s ∈ (1/2, 1) and δ ∈ (0, 1). Then,∫ +∞

R

∫ R

0

χ(δ,+∞)(|x− y|)
|x− y|1+2s

dx dy ⩽
δ1−2s

2s− 1
.

Proof. The claim follows from a direct computation that we provide here for the facility of the reader.
We observe that∫ +∞

R

∫ R

0

χ(δ,+∞)(|x− y|)
|x− y|1+2s

dx dy =

∫ +∞

R

∫ min{R,x−δ}

0

dx dy

(x− y)1+2s

=
1

2s

∫ +∞

R

[
1

(x− y)2s

]min{R,x−δ}

0

dx.

Since x− δ = min{R, x− δ} if and only if x ∈ (R,R+ δ], we obtain that∫ +∞

R

∫ R

0

χ(δ,+∞)(|x− y|)
|x− y|1+2s

dx dy =
1

2s

(∫ R+δ

R

dx

δ2s
+

∫ +∞

R+δ

dx

(x−R)2s
−
∫ +∞

R

dx

x2s

)
⩽

1

2s

(∫ R+δ

R

dx

δ2s
+

∫ +∞

R+δ

dx

(x−R)2s

)
=

1

2s

(
δ1−2s +

δ1−2s

2s− 1

)
=

δ1−2s

2s− 1
. □

Another important tool for proving Proposition C.2 is an adaptation of [CV11, Lemma 10] for
Lipschitz domains. For this, let us define for any ρ > 0 and λ ⩾ 1

Cρ,λ := {(x′, xn) ∈ Rn s.t. |x′| < ρ, |xn| < λρ} = Bn−1
ρ × (−λρ, λρ),

C+
ρ,λ := {(x′, xn) ∈ Rn s.t. |x′| < ρ, 0 < xn < λρ} = Bn−1

ρ × (0, λρ),

C−
ρ,λ := {(x′, xn) ∈ Rn s.t. |x′| < ρ, −λρ < xn < 0} = Bn−1

ρ × (−λρ, 0),

and C0
ρ := Cρ,λ ∩ {xn = 0} = Bn−1

ρ × {0}.

(C.1)

Lemma C.4. Let us consider s ∈ (0, 1), ρ > 0, and λ ⩾ 1, and let ϕ ∈ Lip(Bn−1
ρ ) be a Lipschitz

function such that ϕ = 0 and ∇ϕ(0) = 0.
Let also

C+
ρλ(ϕ) := {(x′, xn) ∈ Rn s.t. |x′| < ρ, ϕ(x′) < xn < λρ},

and C−
ρ,λ(ϕ) := {(x′, xn) ∈ Rn s.t. |x′| < ρ, −ρλ < xn < ϕ(x′)}).

If

(C.2) [ϕ]Lip(Bn−1
ρ ) ⩽

λ

10
,

then there exist a transformation Ψ : Rn → Rn such that Ψ(C±
ρ (ϕ)) = C±

ρ and

(C.3)

∫∫
C+

ρ,λ(ϕ)×C−
ρ,λ(ϕ)

dxdy

|x− y|n+2s
⩽ c

∫∫
C+

ρ,λ×C−
ρ,λ

dxdy

|x− y|n+2s
,
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for some positive constant c independent of ρ.

Proof. Since ϕ is Lipschitz and ϕ(0) = 0, we have that

sup
|x′|<ρ

ϕ(x′) ⩽ [ϕ]Lip(Bn−1
ρ )ρ.

Then, we define function ψ ∈ C∞(Rn) such that

ψ(x) :=

1, if |xn − ϕ(x′)| ⩽
λ−[ϕ]

Lip(Bn−1
ρ )

8 ρ,

0, if |xn − ϕ(x′)| ⩾ (λ− [ϕ]Lip(Bn−1
ρ ))ρ,

and

|∇ψ| ⩽ 2

(λ− [ϕ]Lip(Bn−1
ρ ))ρ

.

Notice that, for any |x′| ⩽ ρ, we have that

|ϕ(x′)± λρ| ⩾ λρ− |ϕ(ρ)| ⩾ (λ− [ϕ]Lip(Bn−1
ρ ))ρ,

and hence

(C.4) ψ(x′,±λρ) = 0.

On the other hand, for any |x′| ⩽ ρ, we have that

(C.5) ψ(x′, ϕ(x′)) = 1.

Now, we consider the transformation Ψ : Rn → Rn defined as

Ψ(x) := (x′, xn − ψ(x)ϕ(x′)) = x− ψ(x)ϕ(x′)en,

where en := (0, . . . , 0, 1) is the usual unit vector in the nth-direction.
By Rademacher’s Theorem, ϕ is differentiable almost everywhere, and, if x̃ := Ψ(x) and ỹ := Ψ(y),

we have

dx̃ dỹ = |1− ∂nΨ(x)ϕ(x′)| |1− ∂nΨ(y)ϕ(y′)|dx dy
⩾
(
1−

∣∣∂nΨ(x)ϕ(x′) + ∂nΨ(y)ϕ(y′)− ∂nΨ(x)ϕ(x′)∂nΨ(y)ϕ(y′)
∣∣) dx dy

⩾ (1− c1)dx dy,

(see also [EG15, Theorem 2, Sec. 3.3.3]) with

(C.6) c1 :=
4[ϕ]2

Lip(Bn−1
ρ )

(λ− [ϕ]Lip(Bn−1
ρ ))

2
+

4[ϕ]Lip(Bn−1
ρ )

λ− [ϕ]Lip(Bn−1
ρ )

⩽
1

16
+

1

2
< 1,

where we have employed (C.2) to obtain the last inequality. It thereby follows that

(C.7) dx dy ⩽
1

1− c1
dx̃ dỹ.

Besides, recalling (C.4) and (C.5), we deduce that

(C.8) Ψ(C±
ρ,λ(ϕ)) = C±

ρ,λ.

Moreover, for almost every x, y ∈ Cρ, we have that

|x̃− ỹ| = |x− ψ(x)ϕ(x′)en − y + ψ(y)ϕ(y′)en|
⩽ |x− y|+ |ψ(x)| |ϕ(x′)− ϕ(y′)|+ |ϕ(y′)| |ψ(x)− ψ(y)|

⩽ |x− y|+ [ϕ]Lip(Bn−1
ρ )|x

′ − y′|+ [ϕ]Lip(Bn−1
ρ )ρ

2

(λ− [ϕ]Lip(Bn−1
ρ ))ρ

|x− y|

⩽ c2|x− y|

for some constant c2 > 0 independent of ρ. This yields

(C.9) |x− y|−n−2s ⩽ c2|x̃− ỹ|−n−2s,

up to renaming c2.
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Using the change of variable x̃ := Ψ(x) and ỹ := Ψ(y) together with (C.8), (C.7), and (C.9), we
conclude that ∫∫

C+
ρ,λ(ϕ)×C−

ρ,λ(ϕ)

dxdy

|x− y|n+2s
⩽

c2
1− c1

∫∫
C+

ρ,λ×C−
ρ,λ

dx̃dỹ

|x̃− ỹ|n+2s
,

showing (C.3). □

Proof of Proposition C.2. Let R > 0 and take η ∈ (0, 1) such that

δ < ηR < 6
√
nηR < R.

Since Ω is bounded, there exists a constant ζ > 0 such that Ω ⊆ Bζ . Up to scaling, we can suppose
that ζ = 1, otherwise we consider η̃ := ηζ ∈ (0, 1).

Moreover, let rΩ, LΩ, and αΩ be as in Definition C.1. We define

λ := max{10LΩ, 1}.
Wa assume that R is so large that

3
√
nδ < RrΩ and 3

√
nδλ < RαΩ,

and that η is so small that
3
√
nη < rΩ and 3

√
nηλ < αΩ.

Then, we have

PK(ΩR)

=

∫∫
ΩR×Ωc

R
{|x−y|<δ}

K(x, y) dx dy +

∫∫
ΩR×Ωc

R
{δ⩽|x−y|<ηR}

K(x, y) dx dy +

∫∫
ΩR×Ωc

R
{|x−y|⩾ηR}

K(x, y) dx dy

= : I1 + I2 + I3.

(C.10)

We aim to provide estimates for each Ij , with j = 1, 2, 3.
First, notice that, by compactness, there exists a finite covering of ∂ΩR made of balls of radius δ,

Bδ := {Bδ(xj) s.t. xj ∈ ∂ΩR}Nδ
j=1,

where Nδ := ♯(Bδ) ⩽ cnδ
1−nRn−1, for some cn > 0 depending only on the dimension n.

Moreover,

(ΩR × Ωc
R) ∩ {|x− y| < δ} ⊆

Nδ⋃
i,j=0

B√
nδ(xi)×B√

nδ(xj) ∩ {|x− y| < δ}

⊆
Nδ⋃
i=0

B3
√
nδ(xi)×B3

√
nδ(xi).

Besides, since ΩR has Lipschitz boundary, for every i, let Rθi := Rθxi
be a rotation and let ϕi := ϕxi

be a Lipschitz function as in Definition C.1, so that

∂(RθiΩR(−xi)) ∩ C3
√
nδ,λ =

{
(x′, ϕi(x

′)) s.t. x′ ∈ Bn−1
3
√
nδ

}
.

Thus, recalling also (1.2) and (1.4), and taking advantage of the rotational symmetries, we infer
that

I1 =
∫∫

ΩR×Ωc
R

{|x−y|<δ}

K(x, y) dx dy ⩽
Nδ∑
i=0

κ2

∫∫
(ΩR∩B3

√
nδ(xi))×(Ωc

R∩B3
√
nδ(xi))

dx dy

|x− y|n+2s1

⩽
Nδ∑
i=0

κ2

∫∫
(Rθi

ΩR(−xi)∩B3
√
nδ)×(Rθi

Ωc
R(−xi)∩B3

√
nδ)

dx dy

|x− y|n+2s1

⩽
Nδ∑
i=0

κ2

∫∫
(Rθi

ΩR(−xi)∩C3
√
nδ,λ)×(Rθi

Ωc
R(−xi)∩C3

√
nδ,λ)

dx dy

|x− y|n+2s1
.

(C.11)

Now, thanks to Lemma C.4, for every i, there exists a transformation Φi : Rn → Rn such that

Φi(RθiΩR(−xi) ∩ C3
√
nδ,λ) = {xn < 0} ∩ C3

√
nδ,λ

and Φi(RθiΩ
c
R(−xi) ∩ C3

√
nδ,λ) = {xn > 0} ∩ C3

√
nδ,λ.
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and ∫∫
(Rθi

ΩR(−xi)∩C3
√
nδ,λ)×(Rθi

Ωc
R(−xi)∩C3

√
nδ,λ)

dx dy

|x− y|n+2s1

⩽ ci1

∫∫
({xn<0}∩C3

√
nδ)×({xn>0}∩C3

√
nδ)

dx dy

|x− y|n+2s1
,

(C.12)

for some positive constant ci1 depending only on n, s1, and Φi.
Moreover, recalling (C.6) and (C.9) from the proof of Lemma C.4, we infer that

ci1 ⩽

(
1 + [ϕi]Lip(Bn−1

rΩ
) +

2[ϕi]Lip(Bn−1
rΩ

)

λ− [ϕi]Lip(Bn−1
rΩ

)

)−(n+2s1)
1

1− 9
16

⩽
16

7
,

for every i. Let us set

(C.13) c1 :=
16

7

∫∫
({xn<0}∩C3

√
nδ)×({xn>0}∩C3

√
nδ)

dx dy

|x− y|n+2s1
< +∞,

which is independent of i.
Thus, plugging(C.12) and (C.13) into (C.11), we arrive at

(C.14) I1 ⩽
Nδ∑
i=0

κ2c
i
1 ⩽ κ2c1Nδ ⩽ c1R

n−1,

up to renaming c1 > 0, now also depending on κ2 and δ.
Let us now focus on estimating I2. To do this, we cover ∂ΩR with balls of radius ηR. By compact-

ness, we find a finite covering

BηR := {BηR(xi) s.t. xi ∈ ∂ΩR}
NηR

i=0 ,

with NηR ⩽ cn,Ωη
1−n (independent of R), and

(ΩR × Ωc
R) ∩ {|x− y| < ηR} ⊆

NηR⋃
i=0

(
(ΩR ∩B3

√
nηR)× (Ωc

R ∩B3
√
nηR)

)
∩ {|x− y| < ηR}.

Therefore,

I2 ⩽
NηR∑
i=0

κ2

∫∫
(ΩR∩B3

√
nηR(xi))×(Ωc

R∩B3
√
nηR(xi))

{δ⩽|x−y|<ηR}

dx dy

|x− y|n+2s2

⩽

NηR∑
i=0

κ2

∫∫
(Rθi

ΩR(−xi)∩B3
√
nηR)×(Rθi

Ωc
R(−xi)∩B3

√
nηR)

{δ⩽|x−y|<ηR}

dx dy

|x− y|n+2s2

⩽

NηR∑
i=0

κ2

∫∫
(Rθi

ΩR(−xi)∩C3
√
nηR,λ)×(Rθi

Ωc
R(−xi)∩C3

√
nηR,λ)

{δ⩽|x−y|<ηR}

dx dy

|x− y|n+2s2

(C.15)

Thus, in the same spirit as above, recalling the notation in (C.1), we find a transformation Ψi : Rn → Rn

such that

Ψi(RθiΩR(xi) ∩ C3
√
nηR,λ) = {xn < 0} ∩ C3

√
nηR,λ = Bn−1

3
√
nηR

× (−3
√
nηλR, 0)

and Ψi(RθiΩ
c
R(xi) ∩ C3

√
nηR,λ) = {xn > 0} ∩ C3

√
nηR,λ = Bn−1

3
√
nηR

× (0, 3
√
nηλR).

For the sake of simplicity, let us call

(C.16) r := 3
√
nηR.
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Then, using again Lemma C.4 and setting c2 := maxi c
i
2 (which does not depend on R), we have∫∫

(Rθi
ΩR(−xi)∩Br)×(Rθi

Ωc
R(−xi)∩Br)

{δ⩽|x−y|<ηR}

dx dy

|x− y|n+2s2

⩽ci2

∫∫
(Bn−1

r ×(−λr,0))×(Bn−1
r ×(0,λr))

{δ⩽|x−y|<ηR}

dx dy

|x− y|n+2s2

⩽c2

∫∫
(Bn−1

r ×(−λr,0))×(Bn−1
r ×(0,λr))

{δ⩽|x−y|<ηR}

dx dy

(|x′ − y′|2 + |xn − yn|2)
n+2s2

2

,

(C.17)

where we have used the notation x = (x′, xn) ∈ Rn−1 × R.
Adopting the change of variable z′ := y′−x′

|xn−zn| and zn := yn, we obtain∫∫
(Bn−1

r ×(−λr,0))×(Bn−1
r ×(0,λr))

{δ⩽|x−y|<ηR}

dx dy

(|x′ − y′|2 + |xn − yn|2)
n+2s2

2

⩽
∫
Bn−1

r

∫
Rn−1

∫ 0

−λr

∫ λr

0
χ(δ,ηR)

(
|xn − zn|

√
1 + |z′|2

) |xn − zn|−1−2s2

(1 + |z′|2)
n+2s2

2

dx′ dz′ dxn dzn

⩽
∫
Bn−1

r

∫
Rn−1

∫ 0

−λr

∫ λr

0
χ(δ,+∞)

(
|xn − zn|

√
1 + |z′|2

) |xn − zn|−1−2s2

(1 + |z′|2)
n+2s2

2

dx′ dz′ dxn dzn

=

∫
Bn−1

r

∫
Rn−1

∫ 0

−λr

∫ λr

0
χ(

δ/
√

1+|z′|2,+∞
)(|xn − zn|)

|xn − zn|−1−2s2

(1 + |z′|2)
n+2s2

2

dx′ dz′ dxn dzn,

where the notation Bn−1
r stands for the ball of radius r in Rn−1.

Now, thanks to Lemma C.3, we have that∫ 0

−λr

∫ λr

0

χ(
δ/
√

1+|z′|2,+∞
)(|xn − zn|)

|xn − zn|1+2s2
dxn dzn ⩽

1

2s2 − 1

(
δ√

1 + |z′|2

)1−2s2

.

Therefore, ∫∫
(Bn−1

r ×(−λr,0))×(Bn−1
r ×(0,λr))

{δ⩽|x−y|<ηR}

dx dy

(|x′ − y′|2 + |xn − yn|2)
n+2s2

2

⩽
δ1−2s2

2s2 − 1

∫
Bn−1

r

∫
Rn−1

dx′ dz′

(1 + |z′|2)
n+1
2

⩽ c2r
n−1 ⩽ c2R

n−1,

up to changing c2 > 0 at every step, where we used (C.16) in the last inequality.
Plugging this information into (C.17), we conclude that∫∫

(Rθi
ΩR(−xi)∩Br)×(Rθi

Ωc
R(−xi)∩Br)

{δ⩽|x−y|<ηR}

dx dy

|x− y|n+2s2
⩽ c2R

n−1.

It follows from this and (C.15) that

(C.18) I2 ⩽
NηR∑
i=0

κ2c2R
n−1 = NηRκ2c2R

n−1 ⩽ cn,Ωη
1−nκ2c2R

n−1 ⩽ c2R
n−1,

up to renaming c2.
At last, we exhibit an estimate for I3. By virtue of (1.4), we have that

I3 ⩽ κ2

∫∫
ΩR×Ωc

R
{|x−y|⩾ηR}

dx dy

|x− y|n+2s2

= κ2

∫∫
ΩR×(B(1+η)R\ΩR)

{|x−y|⩾ηR}

dx dy

|x− y|n+2s2
+ κ2

∫∫
ΩR×Bc

(1+η)R

{|x−y|⩾ηR}

dx dy

|x− y|n+2s2
.

(C.19)
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Notice that

(C.20)

∫∫
ΩR×(B(1+η)R\ΩR)

{|x−y|⩾ηR}

dx dy

|x− y|n+2s2
⩽

|ΩR||B(1+η)R \ ΩR|
(ηR)n+2s2

⩽ c3R
n−2s2 ,

for some positive c3 = c3(n, s2, η).
Additionally, by the change of variable z := y − x,∫∫

ΩR×Bc
(1+η)R

{|x−y|⩾ηR}

dx dy

|x− y|n+2s2
⩽
∫∫

ΩR×Bc
ηR

dx dz

|z|n+2s2
⩽ c3R

n−2s2 .

This inequality and (C.20), together with (C.19), yield that

(C.21) I3 ⩽ κ2c3R
n−2s2 .

As a result of (C.10), (C.11), (C.18), and (C.21), we obtain that

PK(ΩR) ⩽ c1R
n−1 + c2R

n−1 + c3R
n−2s2 ,

concluding the proof. □

Appendix D. Well-posedness of the Plateau problem for the energy F

In this section, we use a Sobolev embedding and a simple covering argument to show that the
minimization problem for the energy functional F with fixed external datum is well-posed. To do

this, let us consider a Lipschitz domain Ω ⊆ Rn and a set Ẽ ⊆ Rn of finite K-perimeter. Suppose K
satisfies (1.2), (1.3), (1.4), and (1.5). Let also g ∈ L∞(Rn) be a Zn-periodic function satisfying (1.1).

We recall that the functional F is defined in (1.7) as

F (E,Ω) := PK(E,Ω) +

∫
E∩Q(Ω)1

g(x) dx

and we investigate the problem:

find E ⊆ Rn such that E \ Ω = Ẽ \ Ω

and F (E,Ω) ⩽ F (F,Ω), for every F s.t. F \ Ω = Ẽ \ Ω,
(D.1)

We claim that:

Proposition D.1 (Well-posedness of the minimization problem (D.1)). There exists a minimizer

for F in Ω with external datum Ẽ \ Ω.

This result is a consequence of a standard compactness argument, whose precise statement goes as
follows:

Lemma D.2. Let {Ej}j be a sequence of sets such that Ej \ Ω = Ẽ \ Ω and

sup
j

F (Ej ,Ω) < +∞.

Then, there exist a set E ⊆ Rn and a subsequence {Ejm}m such that E \ Ω = Ẽ \ Ω and

Ejm → E in L1
loc(Rn), as m→ +∞.

Proof. Let us consider the covering {Bδ/2(x)}x∈Ω of Ω made of balls of radius δ/2. By compactness,

there exist finitely many points x1, . . . , xN ∈ Ω such that, setting B(ℓ) := Bδ/2(xℓ) ∩ Ω, we have

Ω ⊆
N⋃
ℓ=1

B(ℓ),

and B(ℓ) ∩B(ℓ+1) ̸= ∅, for every ℓ ∈ {1, . . . , N − 1}.
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Now, observe that, in virtue of (1.4), for any ℓ ∈ {1, . . . , N} and for any set F ,

κ1
2
[χF ]

2
Hs1 (B(ℓ) =

κ1
2

∫∫
B(ℓ)×B(ℓ)

|χF (x)− χF (y)|2

|x− y|n+s1
dx dy

⩽
1

2

∫∫
B(ℓ)×B(ℓ)

|χF (x)− χF (y)|2K(x, y) dx dy

=

∫∫
B(ℓ)×B(ℓ)

χF (x)χF c(y)K(x, y) dx dy ⩽
∫∫

Ω×Ω
χF (x)χF c(y)K(x, y) dx dy

⩽ PK(F,Ω) = F (F,Ω)−
∫
F∩Q(Ω)1

g(x) dx ⩽ F (F,Ω) + ∥g∥L∞(Ω)|Ω|,

where [·]Hs denotes the (2s)-Gagliardo seminorm.
In particular, we deduce that, for all j ∈ N,

κ1
2
[χEj ]

2
Hs1 (B(1))

⩽ sup
j

F (Ej ,Ω) + ∥g∥L∞(Ω)|Ω|.

Hence, by the compactness of the Sobolev embeddingHs1(B(1)) ↪→↪→ L2(B(1)) ⊆ L1(B(1)) (see [DNPV12,

Corollary 7.2]), there exist a set E1 ⊆ B(1) and a subsequence {Ejm}m such that Ejm → E1 in L
1(B(1))

and pointwise in B(1).
Similarly,

κ1
2
[χEjm

]2
Hs1 (B(2))

⩽ sup
m

F (Ejm ,Ω) + ∥g∥L∞(Ω)|Ω|.

Therefore, up to considering a further subsequence, we also have that Ejm → E2 in L1(B(2)) and

pointwise in B(2), for some set E2 ⊆ B(2). Moreover, by the uniqueness of the limit, it follows
that E1 = E2 in B(1) ∩B(2).

Repeating the same argument in every ball B(ℓ), up to considering further subsequences, we infer
that Ejm → E in L1(Ω), where

E :=

(
N⋃
ℓ=1

Eℓ

)
∪ Ẽ \ Ω,

concluding the proof. □

Proof of Proposition D.1. First, notice that the energy functional F is uniformly bounded from below.
Indeed, for any set F we have

F (F,Ω) ⩾
∫
F∩Q(Ω)1

g(x) dx ⩾ −∥g∥L∞(Ω)|Ω|.

Thus, we consider a minimizing sequence {Ej}j such that Ej \ Ω = Ẽ \ Ω, and

F (Ej ,Ω) → inf{F (F,Ω) s.t. F \ Ω = Ẽ \ Ω}, as j → +∞.

Now we take

F :=

{
Ω in Ω,

Ẽ \ Ω in Rn \ Ω

and we observe that, for any j large enough,

F (Ej ,Ω) ⩽ F (F,Ω) = PK(F,Ω) +

∫
F∩Q(Ω)1

g(x) dx ⩽ PK(Ω) + ∥g∥L∞(Ω)|Ω| < +∞.

Therefore, the desired result follows from Lemma D.2 and the lower semi-continuity of the func-
tional F . □
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