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Abstract. An infinite cluster E in Rd is a sequence of disjoint measurable
sets Ek ⊂ Rd, k ∈ N, called regions of the cluster. Given the volumes ak ≥ 0

of the regions Ek, a natural question is the existence of a cluster E which has
finite and minimal perimeter P (E) among all clusters with regions having such
volumes. We prove that such a cluster exists in the planar case d = 2, for any
choice of the areas ak with

∑√
ak < ∞. We also show the existence of a

bounded minimizer with the property P (E) = H1(∂E), where ∂E denotes the
measure theoretic boundary of the cluster. We also provide several examples
of infinite isoperimetric clusters for anisotropic and fractional perimeters.
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1. Introduction

A finite cluster E is a sequence E = (E1, . . . Ek, . . . , EN ) of measurable sets, such
that |Ek∩Ej | = 0 for k ̸= j, where | · | denotes the Lebesgue measure (usually called
volume). The sets Ej are called regions of the cluster E and E0 := Rd \

⋃∞
k=1 Ek

is called external region. We denote the sequence of volumes of the regions of the
cluster E as

(1) m(E) := (|E1|, |E2|, . . . , |EN |)
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Figure 1. The Apollonian gasket, on the left-hand side, is a clus-
ter with minimal fractional perimeter. On the right-hand side a
similar construction with squares: this is a minimal cluster with
respect to the perimeter induced by the Manhattan distance.

and we call perimeter of the cluster the quantity

(2) P (E) :=
1

2

[
P (E0) +

N∑
k=1

P (Ek)

]
,

where P is the Caccioppoli perimeter. A cluster E is called minimal, or isoperimet-
ric, if

P (E) = min {P (F) : m(F) = m(E)} .
In this paper we consider infinite clusters, i.e., infinite sequences E = (Ek)k∈N of

essentially pairwise disjoint regions: |Ej ∩ Ei| = 0 for i ̸= j (this can be interpreted
as a model for a soap foam). Note that a finite cluster with N regions, can also
be considered a particular case of an infinite cluster for example by posing Ek = ∅
for k > N . Clusters with infinitely many regions of equal areas were considered
in [12], where it has been shown that the honeycomb cluster is the unique minimizer
with respect to compact perturbations. Infinite clusters have been considered also
in [17, 13, 3], where the variational curvature is prescribed, and in [23], where
existence of generalized minimizers for both finite and infinite isoperimetric clusters
has been proven in the general setting of homogeneous metric measure spaces.

An interesting example of infinite cluster, detailed in Example 4.1 (see Figure 1)
is the Apollonian packing of a circle (see [15]). In fact this cluster is composed
by isoperimetric regions and hence should trivially have minimal perimeter among
clusters with regions of the same areas. Actually, it turns out that this cluster
has infinite perimeter and hence all clusters with same prescribed areas have in-
finite perimeter too. Note that very few explicit examples of minimal clusters
are known [10, 26, 14, 25, 19]. Nevertheless, quite curiously, Apollonian packings
give nontrivial examples of infinite isoperimetric clusters for fractional perimeters
[4, 7, 6], as shown in Example 4.1. An even simpler example of an infinite isoperi-
metric planar cluster is given in Example 4.2 (see Figure 1 again) where the Cacciop-
poli perimeter is replaced by an anisotropic perimeter functional [16, 21, 22, 5, 8].

Our main result, Theorem 3.1, states that if d = 2 (planar case), given any
sequence of positive numbers a = (a1, a2, . . . , ak, . . . ) such that

∑∞
k=0

√
ak < +∞,

there exists a minimal cluster E in R2 with m(E) = a. The assumption on a is
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necessary to have at least a competitor cluster with finite perimeter. The proof
relies on two facts which are only available in the planar case: the isodiametric
inequality for connected sets and the semicontinuity of the length of connected sets
(Goła̧b theorem).

2. Notation and preliminaries

2.1. Perimeters and boundaries. For a set E ⊂ Rd with finite perimeter one
can define the reduced boundary ∂∗E which is the set of boundary points x where
the outer normal vector νE(x) can be defined. One has D1E = νE · Hd−1⌞∂∗E
where 1E is the characteristic function of E and D1E is its distributional derivative
(the latter is a vector valued measure and its total variation is customarily denoted
by |D1E |). The measure theoretic boundary of a measurable set E is defined by

∂E := {x ∈ Rd : 0 < |E ∩Bρ(x)| < |Bρ(x)| for all ρ > 0}.

The corresponding notions for clusters can be defined as follows:

∂∗E :=

+∞⋃
k=1

k−1⋃
j=0

∂∗Ek ∩ ∂∗Ej ,

∂E :=
{
x ∈ Rd : 0 < |Ek ∩Bρ(x)| < |Bρ(x)|

for all ρ > 0 and some k = k(ρ, x) ∈ N
}
.

Clearly ∂∗E ⊆ ∂E because given x ∈ ∂∗E there exists k such that x ∈ ∂∗Ek, while
∂Ek ⊆ ∂E for all k. Also it is easy to check that ∂E is closed (and it is the closure
of the union of all the measure theoretic boundaries ∂Ek). Moreover the following
result holds true.

Proposition 2.1. If E is a cluster with finite perimeter, then P (E) = Hd−1(∂∗E).

Proof. Consider the sets Xn, for 1 ≤ n ≤ ∞, defined by

Xn :=
{
x ∈ Rd : # {k ∈ N : x ∈ ∂∗Ek} = n

}
(notice that k = 0 ∈ N, the external region, is included in the count). It is clear
that Xn = ∅ for all n ≥ 3 because in every point of ∂∗Ek there is an approximate
tangent hyper-plane which can only be shared by two regions.

We claim that Hd−1(X1) = 0. To this aim suppose by contradiction that
Hd−1(X1) > 0. Then there exists a j ∈ N such that∣∣D1Ej

∣∣ (X1) = Hd−1(X1 ∩ ∂∗Ej) > 0,

because X1 is contained in the countable union ∪∞
j=0X1 ∩ ∂∗Ej . Hence there is a

subset A ⊂ X1 ∩ ∂∗Ej such that D1Ej
(A) ̸= 0. Notice that

∑∞
k=0 1Ek

= 1, hence
also

∑
k D1Ek

= 0. Since D1Ej (A) ̸= 0 there must exist at least another index
k ̸= j such that D1Ek

(A) ̸= 0, hence Hd−1(A ∩ ∂∗Ek) > 0. But then

∅ ≠ A ∩ ∂∗Ek ⊂ X1 ∩ ∂∗Ej ∩ ∂∗Ek, j ̸= k,

contrary to the definition of X1, which proves the claim.
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In conclusion, the union of all reduced boundaries ∂∗Ek is contained in X2 up
to a Hd−1-negligible set. Hence

P (E) =
1

2

+∞∑
k=0

P (Ek) =
1

2

+∞∑
k=0

Hd−1(∂∗Ek ∩X2) =

=
1

2

+∞∑
k=0

∑
j ̸=k

Hd−1(∂∗Ek ∩ ∂∗Ej) =

+∞∑
k=0

+∞∑
j=k+1

Hd−1(∂∗Ek ∩ ∂∗Ej) =

= Hd−1

+∞⊔
k=0

+∞⊔
j=k+1

∂∗Ek ∩ ∂∗Ej

 = Hd−1(∂∗E)

as claimed. □

2.2. Auxiliary results. In the following theorem we collect known existence and
regularity results for finite minimal clusters from [20, 18].

Theorem 2.2 (existence and regularity of planar N -clusters). Let a1, a2, . . . , aN be
given positive real numbers. Then there exists a minmal N -cluster E = (E1, . . . EN )
in Rs, with |Ek| = ak for k = 1, . . . , N . If E is a minimal N -cluster and d = 2, then
∂E is a pathwise connected set composed by circular arcs or line segments joining
in triples at a finite number of vertices. Moreover in this case P (E) = H1(∂E).

The statement below gives isodiametric inequality for planar finite clusters,

Proposition 2.3 (diameter estimate). If E is an N -cluster in R2 and ∂E is path-
wise connected, then

diam ∂E ≤ P (E).

Proof. Since ∂E is pathwise connected, given any two points x, y ∈ ∂E we find that
|x− y| ≤ H1(∂E) = P (E). □

Another ingredient will be the following statement on cluster truncation,

Proposition 2.4 (cluster truncation). Let E = (E1, . . . , Ek, . . . ) be a (finite or
infinite) cluster and let TNE be the N -cluster (E1, . . . , EN ). Then

P (TNE) ≤ P (E).

Proof. For measurable sets E,F the inequality

P (E ∪ F ) + P (E ∩ F ) ≤ P (E) + P (F )

holds, hence if |E ∩ F | = 0, one has

P (E) = P ((E ∪ F ) ∩ (Rd \ F )) ≤ P (E ∪ F ) + P (F ).
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It follows that

2P (TNE) =

n∑
k=1

P (Ek) + P

(
n⋃

k=1

Ek

)

≤
n∑

k=1

P (Ek) + P

( ∞⋃
k=1

Ek

)
+ P

( ∞⋃
k=n+1

Ek

)

≤
n∑

k=1

P (Ek) + P

( ∞⋃
k=1

Ek

)
+

∞∑
k=n+1

P (Ek)

=

∞∑
k=1

P (Ek) + P

( ∞⋃
k=1

Ek

)
= 2P (E)

as claimed. □

Lemma 2.5. Let E be a measurable set and Ω an open connected set. If ∂E∩Ω = ∅,
then either |Ω ∩ E| = 0 or |Ω \ E| = 0.

Proof. Notice that Ω \ ∂E = A0 ∪A1, where

A0 := {x ∈ Ω: |Bρ(x) ∩ E| = 0 for some ρ > 0} ,
A1 := {x ∈ Ω: |Bρ(x) \ E| = 0 for some ρ > 0} .

It is clear that A0 and A1 are open disjoint sets, and if ∂E ∩ Ω = ∅ their union is
the whole set Ω. If Ω is connected, then either A0 or A1 is equal to Ω which means
that either |Ω ∩ E| = 0 or |Ω \ E| = 0. □

3. Main result

The statement below provides existence of infinite planar isoperimetric clusters.

Theorem 3.1 (existence). Let a = (a1, . . . , ak, . . . ) be a sequence of nonnegative
numbers such that

∑∞
k=1

√
ak < ∞. Then there exists a minimal cluster E in R2,

with m(E) = a satisfying additionally
∞⋃
k=1

Ek is bounded,(3)

∂E is pathwise connected,(4)

H1(∂E \ ∂∗E) = 0.(5)

Remark 3.2. In view of (5) and Proposition 2.1, for the minimal cluster provided
by the above Theorem 3.1, one has

(6) P (E) = H1(∂E) = H1(∂∗E).

Of course there exists a set with finite perimeter E such that P (E) < H1(∂E)
hence (6) is false for general, non minimal, clusters.

It is interesting to note that, as shown in example 4.3, there exists a finite cluster
E satisfying (6), for which one does not have P (Ek) = H1(∂Ek) for all k. It would
be interesting to see whether these equalities hold for minimal clusters.
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Proof. Let p̄ := 2
√
π

∞∑
k=1

√
ak < +∞, and

p := inf{P (E) : E cluster in R2 with |Ek| = ak, k = 1, 2, . . . , n, . . . },
pn := inf{P (E) : E n-cluster in R2 with |Ek| = ak, k = 1, . . . , n}

so that a cluster E with measures m(E) = a is minimal if and only if P (E) = p,
while an n-cluster E with measures |Ek| = ak for k = 1, . . . , n is minimal if and
only if P (E) = pn.

If E is a competitor for p, then TnE is a competitor for pn and, by Proposition 2.4,
one has P (TnE) ≤ P (E). Hence pn ≤ p. Moreover one can build a competitor for
p which is composed by circular disjoint regions (B1, . . . , Bj , . . . ), where Bj are

disjoint balls of radii
√

aj

π , to find that p ≤ p̄ < +∞.
For each n ≥ 1 consider a minimal n-cluster Fn with |Fn

k | = ak for k ≤ n, Fn
k := ∅

for k > n so that P (Fn) = pn. Hence, by Proposition 2.3, up to translations we
might and shall suppose that all the regions Fn

k of all the clusters Fn are contained
in a ball of radius p̄. In fact:

p̄ ≥ p ≥ sup
n

pn = sup
n

P (Fn) ≥ sup
n

diam ∂Fn.

Up to a subsequence we can hence assume that the first regions Fn
1 converge

to a set E1 in the sense that their characteristic functions 1Fn
1

converge to the
characteristic function 1E1

in the Lebesgue space L1(R2) (we call this convergence
L1 convergence of sets). Analogously, up to a sub-subsequence also the second
regions Fn

2 converge in L1 sense to a set E2, and in this way we define inductively
the sets Ek for all k ≥ 1. Then there exists a diagonal subsequence with indices nj

such that for all k one has F
nj

k → Ek in L1 for all k ≥ 1 as j → +∞.
Consider the cluster E with the components Ek defined above. By continuity

we have m(E) = a because F
nj

k → Ek in L1 as j → ∞ and
∣∣Fnj

k

∣∣ = ak for all j.
We claim that the union of all the regions of Fnj also converges to the union of all
the regions of E. For all ε > 0 take N such that

∑∞
k=N+1 ak ≤ ε and notice that( ∞⋃

k=1

Ek

)
△

( ∞⋃
k=1

F
nj

k

)
⊆

N⋃
k=1

(
Ek△F

nj

k

)
∪

∞⋃
k=N+1

Ek ∪
∞⋃

k=N+1

F
nj

k .

Hence

lim sup
j

∣∣∣∣∣
∞⋃
k=1

Ek△
∞⋃
k=1

F
nj

k

∣∣∣∣∣ ≤ lim
j

N∑
k=1

∣∣Ek△F
nj

k

∣∣+ 2ε = 2ε.

Letting ε → 0 we obtain the claim.
By lower semicontinuity of perimeter:

P (Ek) ≤ lim inf
j→+∞

P (F
nj

k ) and P

(
+∞⋃
k=1

Ek

)
≤ lim inf

j→+∞
P

(
+∞⋃
k=1

F
nj

k

)
and hence P (E) ≤ lim infj P (Fnj ) ≤ p proving that E is actually a minimal cluster.
Since all the regions Fn

k are equi-bounded we obtain (3).
We are going to prove (5). By Theorem 2.2 the minimal n-cluster Fn has a

measure theoretic boundary ∂Fn which is a compact and connected set such that
P (Fn) = H1(∂Fn). Up to a subsequence, the compact sets ∂Fnj , being uniformly
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bounded, converge with respect to the Hausdorff distance, to a compact set K.
Without loss of generality suppose nj is labeling this new subsequence.

We claim that ∂E ⊆ K. In fact for any given x ∈ ∂E and any ρ > 0 there
exists k = k(ρ) such that Bρ(x) ∩ Ek and Bρ(x) \ Ek both have positive measure.
Since

∣∣Bρ(x) ∩ F
nj

k

∣∣→ |Bρ(x) ∩ Ek| > 0 and
∣∣Bρ(x) \ F

nj

k

∣∣→ |Bρ(x) \ Ek| > 0 for
j = j(ρ) sufficiently large by Lemma 2.5 there is a point xj

k ∈ Bρ(x) ∩ ∂F
nj

k . As
ρ → 0 the sequence xj

k converges to x and since ∂F
nj

k ⊆ ∂Fnj we conclude that
x ∈ K.

The sets ∂Fn are connected, hence, by the classical Goła̧b theorem on semi-
continuity of one-dimensional Hausdorff measure over sequences of connected sets
(see [2, theorem 4.4.17] or [24, theorem 3.3] for its most general statement and a
complete proof), one has

H1(K) ≤ lim inf
n

H1(∂Fn)

and K is itself connected. Summing up and using Proposition 2.1

(7)
P (E) = H1(∂∗E) ≤ H1(∂E) ≤ H1(K)

≤ lim inf
n

P (Fn) ≤ lim sup
n

pn ≤ p ≤ P (E)

hence H1(∂∗E) = H1(∂E) = H1(K), pn → p and (5) follows.
Finally, to prove that ∂E is connected, it is enough to show ∂E = K. We

already know that ∂E ⊆ K so we suppose by contradiction that there exists x ∈
K \ ∂E. Take any y ∈ K. The set K is arcwise connected by rectifiable arcs, since
it is a compact connected set of finite one-dimensional Hausdorff measure (see
e.g. [9, lemma 3.11] or [2, theorem 4.4.7]), in other words, there exists an injective
continuous curve γ : [0, 1] → K with γ(0) = x and γ(1) = y. Since ∂E is closed in
K there is a small ε > 0 such that γ([0, ε]) ⊂ K \ ∂E and hence H1(K \ ∂E) > 0
contrary to H1(K) = H1(∂E); this contractictions shows the last claim and hence
concludes the proof. □

4. Some examples

We collect here some interesting examples of infinite planar clusters.

Example 4.1 (Apollonian packing). A cluster E, as depicted in Figure 1, can be
constructed so that each region Ek = Brk(xk), k ̸= 0, is a ball contained in the ball
B1 = R2 \ E0. The balls can be choosen to be pairwise disjoint and such that the
measure of B1 \

⋃∞
k=1 Ek = 0 (see [15]).

Clearly such a cluster must be minimal because each region Ek has the minimal
possible perimeter among sets with the given area and the same is true for the
complement of the exterior region E0 which is their union. The boundary ∂E of
such a cluster is the residual set, i.e. the set of zero measure which remains when
the balls Ek are removed from the large ball B1:

(8) ∂E =

+∞⋃
k=0

∂Brk(xk) = B1 \
+∞⋃
k=1

Brk(xk).

Unfortunately the residual set of such a cluster has Hausdorff dimension d > 1
(see [13]) and hence the cluster E cannot have finite perimeter.
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E1

E2

E3E3 E3

Figure 2. An example of a cluster E with finite perimeter such
that P (E) = H1(∂E) but P (E3) < H1(∂E3).

However we can consider the fractional (non local) perimeter Ps defined by

Ps(E) =

∫
E

∫
R2\E

1

|x− y|2+s dx dy

to define the corresponding non local perimeter Ps(E) of the cluster E by means
of definition (2) with Ps in place of P . If rk is the radius of the k-th disk of the
cluster it turns out (see [3]) that the infimum of all α, such that the series

∑
k r

α
k

converges, is equal to d, the Hausdorff dimension of ∂E. Since d ∈ (1, 2) for all
s < 2− d we have ∑

k

r2−s
k < +∞

and since Ps(Br) = C ·r2−s (with 0 < C < +∞) we obtain Ps(E) < +∞ for such s.
It is well known (see [11]) that the solution to the fractional isoperimetric problem
is given by balls, hence E provides an example of an infinite minimal cluster with
respect to the fractional perimeter Ps.

Example 4.2 (Anisotropic isoperimetric packing). We can find a similar example if
we consider an anisotropic perimeter such that the isoperimetric problem has the
square (instead of the circle) as a solution. If ϕ is any norm on R2 one can define the
perimeter Pϕ which is the relaxation of the following functional defined on regular
sets E ⊂ R2:

Pϕ(E) =

∫
∂E

ϕ(νE(x)) dH1(x)

where νE(x) is the exterior unit normal vector to ∂E in x. If ϕ(x, y) = |x| + |y|
(the Manhattan norm) it is well known that the Pϕ-minimal set with prescribed
area (i.e. the Wulff shape) is a square with sides parallel to the coordinated axes
(which is the ball for the dual norm). It is then easy to construct an infinite cluster
E = (E1, . . . , Ek . . . ) where each Ek is a square and also the union of all such
squares is a square, see figure 1. By iterating such a construction it is not difficult
to realize that given any sequence ak, k = 1, . . . , n, . . . of numbers such that their
sum is equal to 1 and each number is a power of 1

4 it is possible to find a cluster
E with m(E) = a such that each Ek is a square and the union

⋃
k Ek is the unit

square.

Example 4.3 (Cantor circles). See Figure 2 and [1, example 2 pag. 59]. Take a
rectangle R divided in two by segmente S on its axis. Let C be a Cantor set with
positive measure constructed on S. Consider the set E3 which is the union of the
balls with diameter on the intervals composing the complementary set S\C. Let E1
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and E2 be the two connected components of R \E3. It turns out that the 3-cluster
E = (E1, E2, E3) has finite perimeter and the perimeter of E is represented by the
Hausdorff measure of the boundary:

P (E) = H1(∂E).

However the same is not true for each region. In fact the boundary ∂E3 of the
region E3 includes C and hence

P (E3) < H1(∂E3).
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