Papers

  1. Barriers for a class of geometric evolutions problems,
    G. Bellettini and M. Novaga,
    Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, serie IX, vol. VIII n. 2, 119-128, 1997 ( .pdf).
  2. Minimal barriers for geometric evolutions,
    G. Bellettini and M. Novaga,
    J. Differential Eqs., vol. 139, n. 1, 76-103, 1997 ( .pdf).
  3. Comparison results between minimal barriers and viscosity solutions for geometric evolutions
    G. Bellettini and M. Novaga,
    Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), vol. XXVI, 97-131, 1998 ( .pdf).
  4. An example of three dimensional fattening for linked space curves evolving by curvature,
    G. Bellettini, M. Novaga and M. Paolini,
    Comm. Partial Differential Equations, vol. 23, 1475-1492, 1998 ( .pdf).
  5. A result on motion by mean curvature in arbitrary codimension,
    G. Bellettini and M. Novaga,
    J. Differential Geom. and its Appl., vol. 11, 205-220, 1999 (.pdf).
  6. Facet-breaking for three dimensional crystals evolving by mean curvature,
    G. Bellettini, M. Novaga and M. Paolini,
    Interfaces and Free Boundaries, vol. 1, 39-55, 1999 ( .pdf).
  7. A computational approach to fractures in crystal growth,
    M. Novaga and E. Paolini,
    Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, serie IX, vol. X, 47-56, 1999 ( .pdf).
  8. Approximation to driven motion by crystalline curvature in two dimensions,
    G. Bellettini, R. Goglione and M. Novaga,
    Adv. Math. Sci. and Appl., vol. 10, 467-493, 2000 ( .pdf).
  9. Approximation and comparison for non-smooth anisotropic motion by mean curvature in R^N,
    G. Bellettini and M. Novaga,
    Math. Mod. Meth. Appl. Sc., vol. 10 n. 1, 1-10, 2000 ( .pdf).
  10. Soluzioni di tipo barriera,
    M. Novaga,
    Bollettino U.M.I., vol. 8, 131-142, 2001 ( .pdf).
  11. On a crystalline variational problem, part I: first variation and global L^\infty-regularity,
    G. Bellettini, M. Novaga and M. Paolini,
    Arch. Rat. Mech. Anal., vol. 157, 165-191, 2001 ( .pdf).
  12. On a crystalline variational problem, part II: BV-regularity and structure of minimizers on facets,
    G. Bellettini, M. Novaga and M. Paolini,
    Arch. Rat. Mech. Anal., vol. 157, 193-217, 2001 ( .pdf).
  13. Characterization of facet-breaking for nonsmooth mean curvature flow in the convex case,
    G. Bellettini, M. Novaga and M. Paolini,
    Interfaces and Free Boundaries, vol. 3 n. 4, 415-446, 2001 ( .pdf).
  14. A stochastic selection principle in case of fattening for curvature flow,
    N. Dirr, S. Luckhaus and M. Novaga,
    Calc. Var. PDE, vol. 13 n. 4, 405-425, 2001 ( .pdf).
  15. Some regularity results for minimal crystals,
    L. Ambrosio, M. Novaga and E. Paolini,
    ESAIM Control Optim. Calc. Var., vol. 8, 69-103, 2002 ( .pdf).
  16. Regularity results for some 1-homogeneous functionals,
    M. Novaga and E. Paolini,
    Nonlinear Anal. Real World Appl., vol. 3 n. 4, 555-566, 2002 ( .pdf).
  17. The total variation flow in R^N,
    G. Bellettini, V. Caselles and M. Novaga,
    J. Differential Eqs., vol. 184 n. 2, 475-525, 2002 ( .pdf).
  18. First variation of anisotropic energies and crystalline mean curvature for partitions,
    G. Bellettini, M. Novaga and G. Riey,
    Interfaces and Free Boundaries, vol. 5 n. 3, 331-356, 2003 ( .pdf).
  19. Motion by curvature of planar networks,
    C. Mantegazza, M. Novaga and V. Tortorelli,
    Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. III, 235-324, 2004 ( .pdf).
  20. Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium,
    M. Lucia, C. Muratov and M. Novaga,
    Comm. Pure Appl. Math., vol. 57 n. 5, 616-636, 2004 ( .pdf).
  21. Explicit solutions of the eigenvalue problem - div (Du/|Du|) = u,
    G. Bellettini, V. Caselles and M. Novaga,
    SIAM J. Math. Anal., vol. 36 n. 4, 1095-1129, 2005 ( .pdf).
  22. Regularity results for boundaries in R^2 with prescribed anisotropic curvature,
    M. Novaga and E. Paolini,
    Annali Mat. Pura e Appl., vol. 184 n. 2, 239-261, 2005 ( .pdf).
  23. Stability of crystalline evolutions,
    M. Novaga and E. Paolini,
    Math. Mod. Meth. Appl. Sc., vol. 15 n. 6, 1-17, 2005 ( .pdf).
  24. Crystalline mean curvature flow of convex sets,
    G. Bellettini, V. Caselles, A. Chambolle and M. Novaga,
    Arch. Rat. Mech. Anal., vol. 179 n. 1, 109-152, 2006 ( .pdf).
  25. Global solutions to the gradient flow equation of a nonconvex functional,
    G. Bellettini, M. Novaga and E. Paolini,
    SIAM J. Math. Anal., vol. 37 n. 5, 1657-1687, 2006 ( .pdf).
  26. Convergence of an algorithm for anisotropic and crystalline mean curvature flow,
    A. Chambolle and M. Novaga,
    SIAM J. Math. Anal., vol. 37 n. 6, 1978--1987, 2006 ( .pdf).
  27. Γ-convergence of the Allen-Cahn energy with an oscillating forcing term,
    N. Dirr, M. Lucia and M. Novaga,
    Interfaces and Free Boundaries, vol. 8 n. 1, 47--78, 2006 ( .pdf).
  28. Deterministic equivalent for the Allen-Cahn energy of a scaling law in the Ising model,
    G. Bellettini, M. S. Gelli, S. Luckhaus and M. Novaga,
    Calc. Var. PDE, vol. 26 n. 4, 429-445, 2006 ( .pdf).
  29. Crystalline curvature flow of planar networks,
    G. Bellettini, M. Chermisi and M. Novaga,
    Interfaces and Free Boundaries, vol. 8 n. 4, 481-521, 2006 ( .pdf).
  30. A conjecture of De Giorgi on the squared distance function,
    G. Bellettini, M. Masala and M. Novaga,
    J. Convex Analysis, vol. 14 n. 2, 351-358, 2007 ( .pdf).
  31. Singular perturbations of mean curvature flow,
    G. Bellettini, C. Mantegazza and M. Novaga,
    J. Diff. Geom., vol. 75 n. 3, 403-431, 2007 ( .pdf).
  32. Approximation of the anisotropic mean curvature flow,
    A. Chambolle and M. Novaga,
    Math. Mod. Meth. Appl. Sc., vol. 17 n. 6, 833-844, 2007 ( .pdf).
  33. Nonuniqueness for crystalline curvature flow,
    M. Novaga and M. Paolini,
    Math. Mod. Meth. Appl. Sc., vol. 17 n. 8, 1307-1315, 2007 ( .pdf).
  34. The geometry of mesoscopic phase transition interfaces,
    M. Novaga and E. Valdinoci,
    Discrete Contin. Dyn. Syst. A, vol. 19 n. 4, 777-798, 2007 ( .pdf).
  35. The level set method for systems of PDEs,
    G. Bellettini, M. Chermisi and M. Novaga,
    Comm. Partial Differential Equations, vol. 32 n. 7, 1043-1064, 2007 ( .pdf).
  36. The discontinuity set of solutions of the TV denoising problem and some extensions,
    V. Caselles, A. Chambolle and M. Novaga,
    Multiscale Modeling and Simulation, vol. 6 n. 3, 879-894, 2007 ( .pdf).
  37. Uniqueness of the Cheeger set of a convex body,
    V. Caselles, A. Chambolle and M. Novaga,
    Pacific Journal of Mathematics, vol. 232 n. 1, 77-90, 2007 ( .pdf).
  38. Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders,
    M. Lucia, C. Muratov and M. Novaga,
    Arch. Rat. Mech. Anal., vol. 188 n. 3, 475-508, 2008 ( .pdf).
  39. The p-Laplace eigenvalue problem as p goes to 1 and Cheeger sets in a Finsler metric,
    B. Kawohl and M. Novaga,
    J. Convex Analysis, vol. 15 n. 3, 623-634, 2008 ( .pdf).
  40. Convergence of discrete schemes for the Perona-Malik equation,
    G. Bellettini, M. Novaga, M. Paolini and C. Tornese,
    J. Differential Eqs., vol. 245, 892-924, 2008 ( .pdf).
  41. A characterization of convex calibrable sets in R^N with respect to anisotropic norms,
    V. Caselles, A. Chambolle, S. Moll and M. Novaga,
    Annales IHP - Analyse Nonlineaire, vol. 25, 803-832, 2008 (.pdf).
  42. Implicit time discretization of the mean curvature flow with a discontinuous forcing term,
    A. Chambolle and M. Novaga,
    Interfaces and Free Boundaries, vol. 10, 283-300, 2008 ( .pdf).
  43. Gradient theory of phase transitions with a rapidly oscillating forcing term,
    N. Dirr, M. Lucia and M. Novaga,
    Asymptotic Analysis, vol. 60, 29-59, 2008 ( .pdf).
  44. Front propagation in infinite cylinders I. A variational approach,
    C. Muratov and M. Novaga,
    Comm. Math. Sci., vol. 6 n. 4, 799-826, 2008 ( .pdf).
  45. Front propagation in infinite cylinders II. The sharp reaction zone limit,
    C. Muratov and M. Novaga,
    Calc. Var. PDE, vol. 31, 521-547, 2008 ( .pdf).
  46. Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations,
    M. Novaga and E. Valdinoci,
    ESAIM Control Optim. Calc. Var., vol. 15 n. 4, 914-933, 2009 (.pdf).
  47. The volume preserving crystalline mean curvature flow of convex sets in R^N,
    G. Bellettini, V. Caselles, A. Chambolle and M. Novaga,
    J. Math. Pures Appl., vol. 92 n. 5, 499-527, 2009 ( .pdf).
  48. Classification of the equilibria for the semi-discrete Perona-Malik equation,
    G. Bellettini, M. Novaga, M. Paolini and C. Tornese,
    Calcolo, vol. 46 n. 4, 221-243, 2009 ( .pdf).
  49. Γ-entropy cost for scalar conservation laws,
    G. Bellettini, L. Bertini, M. Mariani and M. Novaga,
    Arch. Rat. Mech. Anal., vol. 195 n. 1, 261-309, 2010 ( .pdf).
  50. Motion and pinning of discrete interfaces,
    A. Braides, M.S. Gelli and M. Novaga,
    Arch. Rat. Mech. Anal., vol. 195 n. 2, 469-498, 2010 ( .pdf).
  51. Time-like lorentzian minimal submanifolds as singular limits of nonlinear wave equations,
    G. Bellettini, M. Novaga and G. Orlandi,
    Physica D, vol. 239 n. 6, 335-339, 2010 (.pdf).
  52. Some remarks on uniqueness and regularity of Cheeger sets,
    V. Caselles, A. Chambolle and M. Novaga,
    Rend. Sem. Mat. Padova, vol. 123, 191-201, 2010 (.pdf).
  53. Total Variation and Cheeger sets in Gauss space,
    V. Caselles, M. Miranda and M. Novaga,
    J. Funct. Anal., vol. 259 n. 6, 1491-1516, 2010 (.pdf).
  54. Closure and convexity properties of closed relativistic strings,
    G. Bellettini, J. Hoppe, M. Novaga and G. Orlandi,
    Complex Anal. Oper. Theory, vol. 4 n. 3, 473-496, 2010 (.pdf).
  55. Bump solutions for the mesoscopic Allen-Cahn equation in periodic media,
    M. Novaga and E. Valdinoci,
    Calc. Var. PDE, vol. 40 n. 1-2, 37-49, 2011 (.pdf).
  56. Homogenization of fronts in highly heterogeneous media,
    G. Barles, A. Cesaroni and M. Novaga,
    SIAM J. Math. Anal., vol. 43 n. 1, 212-227, 2011 (.pdf).
  57. Convergence for long-times of a semidiscrete Perona-Malik equation in one dimension,
    G. Bellettini, M. Novaga and M. Paolini,
    Math. Mod. Meth. Appl. Sc., vol. 21 n. 2, 1-25, 2011 ( .pdf).
  58. Closed curves of prescribed curvature and a pinning effect,
    M. Novaga and E. Valdinoci,
    Netw. Heterog. Media, vol. 6 n. 1, 77-88, 2011 (.pdf).
  59. Regularity for solutions of the total variation denoising problem,
    V. Caselles, A. Chambolle and M. Novaga,
    Rev. Mat. Iberoamericana, vol. 27 n. 1, 233-252, 2011 (.pdf).
  60. Curvature evolution of nonconvex lens-shaped domains,
    G. Bellettini and M. Novaga,
    J. Reine Angew. Math., vol. 656, 17-46, 2011 (.pdf).
  61. A semidiscrete scheme for a one-dimensional Cahn-Hilliard equation,
    C. Geldhauser and M. Novaga,
    Interfaces and Free Boundaries, vol. 13 n. 3, 327-339, 2011 (.pdf).
  62. Curve shortening flow in heterogeneous media,
    A. Cesaroni, M. Novaga and E. Valdinoci,
    Interfaces and Free Boundaries, vol. 13 n. 4, 485-505, 2011 (.pdf).
  63. On the gradient flow of a one-homogeneous functional,
    A. Briani, A. Chambolle, M. Novaga and G. Orlandi,
    Confluentes Mathematici, vol. 3 n. 4, 617-635, 2011 (.pdf).
  64. Infinite paths and cliques in random graphs,
    A. Berarducci, P. Majer and M. Novaga,
    Fund. Math., vol. 216, 163-191, 2012 (.pdf).
  65. Monotone paths in random hypergraphs,
    P. Majer and M. Novaga,
    Electron. J. Comb., vol. 19 n. 2, #P3, 17 pp., 2012 (.pdf).
  66. Perimeter of sublevel sets in infinite dimensional spaces,
    V. Caselles, A. Lunardi, M. Miranda and M. Novaga,
    Adv. Calc. Var., vol. 5 n. 1, 59-76, 2012 (.pdf).
  67. Global exponential convergence to variational traveling waves in cylinders,
    C. Muratov and M. Novaga,
    SIAM J. Math. Anal., vol. 44 n. 1, 293-315, 2012 (.pdf).
  68. Volume-constrained minimizers for the prescribed curvature problem in periodic media,
    M. Goldman and M. Novaga,
    Calc. Var. PDE, vol. 44 n. 3-4, 297-318, 2012 (.pdf).
  69. Approximation and relaxation of perimeter in the Wiener space,
    M. Goldman and M. Novaga,
    Annales IHP - Analyse Nonlineaire, vol. 29, 525-544, 2012 (.pdf).
  70. Mean curvature flow with obstacles,
    L. Almeida, A. Chambolle and M. Novaga,
    Annales IHP - Analyse Nonlineaire, vol. 29, 667-681, 2012 (.pdf).
  71. Convergence of the one-dimensional Cahn-Hilliard Equation,
    G. Bellettini, L. Bertini, M. Mariani and M. Novaga,
    SIAM J. Math. Anal., vol. 44 n. 5, 3458-3480, 2012 (.pdf).
  72. Lorentzian varifolds and applications to closed relativistic strings,
    G. Bellettini, M. Novaga and G. Orlandi,
    Indiana Univ. Math. J., vol. 61 n. 6, 2251-2310, 2012 (.pdf).
  73. One-dimensional symmetry for semilinear equations with unbounded drift,
    A. Cesaroni, M. Novaga and A. Pinamonti,
    Comm. Pure Appl. Analysis, vol. 12 n. 5, 2203-2211, 2013 (.pdf).
  74. Convergence of a semidiscrete scheme for a forward-backward parabolic equation,
    G. Bellettini, C. Geldhauser and M. Novaga,
    Advances Differential Equations, vol. 18 n. 5/6, 495-522, 2013 (.pdf).
  75. Representation, relaxation and convexity for variational problems in Wiener spaces,
    A. Chambolle, M. Goldman and M. Novaga,
    J. Math. Pures Appl., vol. 99 n. 4, 419-435, 2013 (.pdf).
  76. Droplet condensation and isoperimetric towers,
    M. Novaga, A. Sobolevski and E. Stepanov,
    Pacific Journal of Mathematics, vol. 262 n. 2, 457-480, 2013 (.pdf).
  77. Long-time behavior of the mean curvature flow with periodic forcing,
    A. Cesaroni and M. Novaga,
    Comm. Partial Differential Equations, vol. 38 n. 5, 780-801, 2013 (.pdf).
  78. Multiplicity of supercritical fronts for reaction-diffusion equations in cylinders,
    P. Gordon, C. Muratov and M. Novaga,
    Calc. Var. PDE, vol. 47 n. 3-4, 683-709, 2013 (.pdf).
  79. On the jump set of solutions of the Total Variation flow,
    V. Caselles, K. Jalalzai and M. Novaga,
    Rend. Sem. Mat. Padova, vol. 130, 155-168, 2013 (.pdf).
  80. A symmetry result for the Ornstein-Uhlenbeck operator,
    A. Cesaroni, M. Novaga and E. Valdinoci,
    Discrete Contin. Dyn. Syst. A, vol. 34 n. 6, 2451-2467, 2014 (.pdf).
  81. Curve shortening-straightening flow for non-closed planar curves with infinite length,
    M. Novaga and S. Okabe,
    J. Differential Eqs., vol. 256 n. 3, 1093-1132, 2014 (.pdf).
  82. Plane-like minimizers and differentiability of the stable norm,
    A. Chambolle, M. Goldman and M. Novaga,
    J. Geometric Anal., vol. 24 n. 3, 1447-1489, 2014 (.pdf).
  83. Symmetry results for nonlinear elliptic operators with unbounded drift,
    A. Farina, M. Novaga and A. Pinamonti,
    NoDEA Nonlinear Differential Equations Appl., vol. 21 n. 6, 869-883, 2014 (.pdf).
  84. On the regularity of timelike extremal surfaces,
    R.L. Jerrard, M. Novaga and G. Orlandi,
    Comm. Contemp. Math., vol. 17 n. 1, 1450048 (19 pages), 2015 (.pdf).
  85. Fine properties of the subdifferential for a class of one-homogeneous functionals,
    A. Chambolle, M. Goldman and M. Novaga,
    Adv. Calc. Var., vol. 8 n. 1, 31-42, 2015 (.pdf).
  86. Eventual regularity for the parabolic minimal surface equation,
    G. Bellettini, M. Novaga and G. Orlandi,
    Discrete Contin. Dyn. Syst. A, vol. 35 n. 12, 5711-5723, 2015 (.pdf).
  87. Gamma-type estimates for the one-dimensional Allen-Cahn's action,
    G. Bellettini, A. Nayam and M. Novaga,
    Asymptotic Analysis, vol. 94 n. 1-2, 161-185, 2015 (.pdf).
  88. Front propagation in geometric and phase field models of stratified media,
    A. Cesaroni, C. Muratov and M. Novaga,
    Arch. Rat. Mech. Anal., vol. 216 n. 1, 153-191, 2015 (.pdf).
  89. Existence and stability for a non-local isoperimetric model of charged liquid drops,
    M. Goldman, M. Novaga and B. Ruffini,
    Arch. Rat. Mech. Anal., vol. 217 n. 1, 1-36, 2015 (.pdf).
  90. Mean curvature flow with obstacles: existence, uniqueness and regularity of solutions,
    G. Mercier and M. Novaga,
    Interfaces and Free Boundaries, vol. 17 n. 3, 399-426, 2015 (.pdf).
  91. Nonlocal quantitative isoperimetric inequalities,
    A. Di Castro, M. Novaga, B. Ruffini and E. Valdinoci,
    Calc. Var. PDE, vol. 54 n. 3, 2421-2464, 2015 (.pdf).
  92. Regularity of the obstacle problem for the parabolic biharmonic equation,
    M. Novaga and S. Okabe,
    Math. Ann., vol. 363 n. 3-4, 1147-1186, 2015 (.pdf).
  93. Brunn-Minkowski inequality for the 1-Riesz capacity and level set convexity for the 1/2-Laplacian,
    M. Novaga and B. Ruffini,
    J. Convex Analysis, vol. 22 n. 4, 1125-1134, 2015 (.pdf).
  94. Motion by curvature of planar networks II,
    A. Magni, C. Mantegazza and M. Novaga,
    Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. XV, 117-144, 2016 (.pdf).
  95. The two obstacle problem for the parabolic biharmonic equation,
    M. Novaga and S. Okabe,
    Nonlinear Anal., vol. 136, 215-233, 2016 (.pdf).
  96. A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications,
    M. Novaga, D. Pallara and Y. Sire,
    Discrete Contin. Dyn. Syst. S, vol. 9 n. 3, pp. 815-831, 2016 (.pdf).
  97. On well-posedness of variational models of charged drops,
    C. Muratov and M. Novaga,
    Proc. R. Soc. A, vol. 472 n. 2187, 20150808, 2016 (.pdf).
  98. Low density phases in a uniformly charged liquid,
    H. Knüpfer, C. Muratov and M. Novaga,
    Comm. Math. Phys., vol. 345 n. 1, 141-183, 2016 (.pdf).
  99. A note on non lower semicontinuous perimeter functionals on partitions,
    A. Magni and M. Novaga,
    Netw. Heterog. Media, vol. 11 n. 3, 501-508, 2016 (.pdf).
  100. Ground states of a two phase model with cross and self attractive interactions,
    M. Cicalese, L. De Luca, M. Novaga and M. Ponsiglione,
    SIAM J. Math. Anal., vol. 48 n. 5, 3412-3443, 2016 (.pdf).
  101. Motion by curvature of networks with two triple junctions,
    C. Mantegazza, M. Novaga and A. Pluda,
    Geometric Flows, vol. 2, 18-48, 2017 (.pdf).
  102. Minimizers of anisotropic perimeters with cylindrical norms,
    G. Bellettini, S. Kholmatov and M. Novaga,
    Comm. Pure Appl. Analysis, vol. 16 n. 4, 1427-1454, 2017 (.pdf).
  103. Volume constrained minimizers of the fractional perimeter with a potential energy,
    A. Cesaroni and M. Novaga,
    Discrete Contin. Dyn. Syst. S, vol. 4 n. 10, 715-727, 2017 (.pdf).
  104. Rigidity of critical points for a nonlocal Ohta-Kawasaki energy,
    S. Dipierro, M. Novaga and E. Valdinoci,
    Nonlinearity, vol. 30 n. 4, 1523-1535, 2017 (.pdf).
  105. Parabolic equations in time dependent domains,
    J. Calvo, M. Novaga and G. Orlandi,
    J. Evol. Eqs., vol. 17 n. 2, 781-804, 2017 (.pdf).
  106. Homogenization of a semilinear heat equation,
    A. Cesaroni, N. Dirr and M. Novaga,
    J. Éc. polytech. Math., vol. 4, 633-660, 2017 (.pdf).
  107. Spines of minimal length,
    B. Martelli, M. Novaga, A. Pluda and S. Riolo
    Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. XVII, 1067-1090, 2017 (.pdf).
  108. Some results on anisotropic fractional mean curvature flows,
    A. Chambolle, M. Novaga and B. Ruffini,
    Interfaces and Free Boundaries, vol. 19 n. 3, 393-415, 2017 (.pdf).
  109. Weighted TV minimization and applications to vortex density models,
    P. Athavale, R.L. Jerrard, M. Novaga and G. Orlandi,
    J. Convex Analysis, vol. 24 n. 4, 1051-1084, 2017 (.pdf).
  110. On the existence of connecting orbits for critical values of the energy,
    G. Fusco, G. F. Gronchi and M. Novaga,
    J. Differential Eqs., vol. 263 n. 12, 8848-8872, 2017 (.pdf).
  111. Convergence to equilibrium of gradient flows defined on planar curves,
    M. Novaga and S. Okabe,
    J. Reine Angew. Math., vol. 733, 87-120, 2017 (.pdf).
  112. Isoperimetric problems for a nonlocal perimeter of Minkowski type,
    A. Cesaroni and M. Novaga,
    Geometric Flows, vol. 2, 86-93, 2017 (.pdf).
  113. The isoperimetric problem for nonlocal perimeters,
    A. Cesaroni and M. Novaga,
    Discrete Contin. Dyn. Syst. S, vol. 11 n. 3, 425-440, 2018 (.pdf).
  114. Existence, regularity and structure of confined elasticae,
    F. Dayrens, S. Masnou and M. Novaga,
    ESAIM Control Optim. Calc. Var., vol. 24 n. 1, 25-43, 2018 (.pdf).
  115. A fractional isoperimetric problem in the Wiener space,
    M. Novaga, D. Pallara and Y. Sire,
    J. Anal. Math., vol. 134 n. 2, 787-800, 2018 (.pdf).
  116. Minimizers for nonlocal perimeters of Minkowski type,
    A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci,
    Calc. Var. PDE, vol. 57 n. 2, Art. 64, 40 pp., 2018 (.pdf).
  117. On minimizers of an isoperimetric problem with long-range interactions under a convexity constraint,
    M. Goldman, M. Novaga and B. Ruffini,
    Anal. PDE, vol. 11 n. 5, 1113-1142, 2018 (.pdf).
  118. On equilibrium shapes of charged flat drops,
    C. Muratov, M. Novaga and B. Ruffini,
    Comm. Pure Appl. Math., vol. 71 n. 6, 1049-1073, 2018 (.pdf).
  119. On the existence of heteroclinic connections,
    G. Fusco, G. F. Gronchi and M. Novaga,
    São Paulo J. Math. Sci., vol. 12 n. 1, 68-81, 2018 (.pdf).
  120. Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature,
    G. Ciraolo, A. Figalli, F. Maggi and M. Novaga,
    J. Reine Angew. Math., vol. 741, 275-294, 2018 (.pdf).
  121. Crystalline evolutions in chessboard-like microstructures,
    A. Malusa and M. Novaga,
    Netw. Heterog. Media, vol. 13 n. 3, 493-513, 2018 (.pdf).
  122. Generalized crystalline evolutions as limits of flows with smooth anisotropies,
    A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione,
    Anal. PDE, vol. 12 n. 3, 789-813, 2019 (.pdf).
  123. On stationary fractional Mean Field Games,
    A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga and E. Valdinoci,
    J. Math. Pures Appl., vol. 122, 1-22, 2019 (.pdf).
  124. Existence of periodic orbits near heteroclinic connections,
    G. Fusco, G. F. Gronchi and M. Novaga,
    Minimax Theory Appl., vol. 4 n. 1, 113-149, 2019 (.pdf).
  125. On a Minkowski geometric flow in the plane: Evolution of curves with lack of scale invariance,
    S. Dipierro, M. Novaga and E. Valdinoci,
    J. London Math. Soc., vol. 99 n. 1, 31-51, 2019 (.pdf).
  126. Existence and uniqueness for anisotropic and crystalline mean curvature flows,
    A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione,
    J. Amer. Math. Soc., vol. 32 n. 3, 779-824, 2019 (.pdf).
  127. A variational scheme for hyperbolic obstacle problems,
    M. Bonafini, M. Novaga and G. Orlandi,
    Nonlinear Anal., vol. 188, 389-404, 2019 (.pdf).
  128. Γ-convergence of the Heitmann-Radin sticky disc energy to the crystalline perimeter,
    L. De Luca, M. Novaga and M. Ponsiglione,
    J. Nonlinear Sci., vol. 29 n. 4, 1273-1299, 2019 (.pdf).
  129. Fattening and nonfattening phenomena for planar nonlocal curvature flows,
    A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci,
    Math. Ann., vol. 375 n. 1-2, 687-736, 2019 (.pdf).
  130. Approximation of the relaxed perimeter functional under a connectedness constraint by phase-fields,
    P.W. Dondl, M. Novaga, B. Wirth and S. Wojtowytsch,
    SIAM J. Math. Anal., vol. 51 n. 5, 3902-3920, 2019 (.pdf).
  131. Minimizers of the p-oscillation functional,
    A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci,
    Discrete Contin. Dyn. Syst. A, vol. 39 n. 12, 6785-6799, 2019 (.pdf).
  132. Anisotropic curvature flow of immersed curves,
    G. Mercier, M. Novaga and P. Pozzi
    Comm. Anal. Geom., vol. 7 n. 4, 937-964, 2019 (.pdf).
  133. Emergence of non-trivial minimizers for the three-dimensional Ohta-Kawasaki energy,
    H. Knüpfer, C. Muratov and M. Novaga,
    Pure and Appl. Anal., vol. 2 n. 1, 1-21, 2020 (.pdf).
  134. A second order gradient flow of p-elastic planar networks,
    M. Novaga and P. Pozzi,
    SIAM J. Math. Anal., vol. 52 n. 1, 682-708, 2020 (.pdf).
  135. Quantitative estimates for bending energies and applications to non-local variational problems,
    M. Goldman, M. Novaga and M. Röger,
    Proc. Roy. Soc. Edinburgh Sect. A, vol. 150 n. 1, 131-169, 2020 (.pdf).
  136. Second-order asymptotics of the fractional perimeter as s → 1,
    A. Cesaroni and M. Novaga,
    Mathematics in Engineering, vol. 2 n. 3, 512-526, 2020 (.pdf).
  137. Connected surfaces with boundary minimizing the Willmore energy,
    M. Novaga and M. Pozzetta,
    Mathematics in Engineering, vol. 2 n. 3, 527-556, 2020 (.pdf).
  138. Crystalline evolutions with rapidly oscillating forcing terms,
    A. Braides, A. Malusa and M. Novaga,
    Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. XX n. 1, 143-175, 2020 (.pdf).
  139. Nonlocal minimal clusters in the plane,
    A. Cesaroni and M. Novaga,
    Nonlinear Anal., vol. 199, Paper n. 111945, 2020 (.pdf).
  140. On the convergence rate of some nonlocal energies,
    A. Chambolle, M. Novaga and V. Pagliari,
    Nonlinear Anal., vol. 200, Paper n. 112016, 2020 (.pdf).
  141. Symmetric self-shrinkers for the fractional mean curvature flow,
    A. Cesaroni and M. Novaga,
    J. Geometric Anal., vol. 30 n. 4, 3698-3715, 2020 (.pdf).
  142. Minimal elastic networks,
    A. Dall'Acqua, M. Novaga and A. Pluda,
    Indiana Univ. Math. J., vol. 69 n. 6, 1909-1932, 2020 (.pdf).
  143. Minimisers of a general Riesz-type problem,
    M. Novaga and A. Pratelli,
    Nonlinear Analysis, vol. 209, Paper n. 112346, 2021 (.pdf).
  144. On the obstacle problem for fractional semilinear wave equations,
    M. Bonafini, V.P.C. Le, M. Novaga and G. Orlandi,
    Nonlinear Analysis, vol. 210, Paper n. 112368, 2021 (.pdf).
  145. Nonlinear Spectral Decompositions by Gradient Flows of One-Homogeneous Functionals,
    L. Bungert, M. Burger, A. Chambolle and M. Novaga,
    Anal. PDE, vol. 14 n. 3, 823-860, 2021 (.pdf).
  146. Anisotropic curvature flow of immersed networks,
    H. Kröner, M. Novaga and P. Pozzi
    Milan J. Math., vol. 89 n. 1, 147-186, 2021 (.pdf).
  147. Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows,
    A. Cesaroni, L. De Luca, M. Novaga and M. Ponsiglione,
    Comm. Partial Differential Equations, vol. 46 n. 7, 1344-1371, 2021 (.pdf).
  148. Heteroclinic connections and Dirichlet problems for a nonlocal functional of oscillation type,
    A. Cesaroni, S. Dipierro, M. Novaga and E. Valdinoci,
    Annali Mat. Pura e Appl., vol. 200 n. 5, 1999-2041, 2021 (.pdf).
  149. Connected Coulomb Columns: Analysis and Numerics,
    P.W. Dondl, M. Novaga, S. Wojtowytsch and S. Wolff-Vorbeck,
    Nonlinearity, vol. 34 n. 9, 6120-6139, 2021 (.pdf).
  150. On critical points of the relative fractional perimeter,
    A. Malchiodi, M. Novaga and D. Pagliardini,
    Annales IHP - Analyse Nonlineaire, vol. 38 n. 5, 1407-1428, 2021 (.pdf).
  151. Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions,
    A. Cesaroni, H. Kröner and M. Novaga,
    ESAIM Control Optim. Calc. Var., vol. 27, Paper n. 97, 17 pp., 2021 (.pdf).
  152. The 0-fractional perimeter between fractional perimeters and Riesz potentials,
    L. De Luca, M. Novaga and M. Ponsiglione,
    Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. XXII n. 4, 1559-1596, 2021 (.pdf).
  153. Reifenberg flatness for quasi-minimizers of the perimeter under minimal assumptions,
    M. Goldman, M. Novaga and B. Ruffini,
    Proc. Amer. Math. Soc., vol. 150 n. 3, 1153-1165, 2022 (.pdf).
  154. Conducting flat drops in a confining potential,
    C. Muratov, M. Novaga and B. Ruffini,
    Arch. Rat. Mech. Anal., vol. 243 n. 3, 1773-1810, 2022 (.pdf).
  155. K mean-convex and K-outward minimizing sets,
    A. Cesaroni and M. Novaga,
    Interfaces and Free Boundaries, vol. 24 n. 1, 35-61, 2022 (.pdf).
  156. Connected perimeter of planar sets,
    F. Dayrens, S. Masnou, M. Novaga and M. Pozzetta,
    Adv. Calc. Var., vol. 15 n. 2, 213-234, 2022 (.pdf).
  157. Graphical translators for anisotropic and crystalline mean curvature flow,
    A. Cesaroni, H. Kröner and M. Novaga,
    J. Math. Anal. Appl., vol. 514 n. 2, Paper n. 126314, 2022 (.pdf).
  158. Anisotropic and crystalline mean curvature flow of mean-convex sets,
    A. Chambolle and M. Novaga,
    Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. XXIII n. 2, 623-643, 2022 (.pdf).
  159. Existence of minimizers for a generalized liquid drop model with fractional perimeter,
    M. Novaga and F. Onoue,
    Nonlinear Analysis, vol. 224, Paper n. 113078, 2022 (.pdf).
  160. Isoperimetric clusters in homogeneous spaces via concentration compactness,
    M. Novaga, E. Paolini, E. Stepanov and V. Tortorelli
    J. Geometric Anal., vol. 32 n. 11, Paper n. 263, 2022 (.pdf).
  161. Type-0 singularities in the network flow - Evolution of trees,
    C. Mantegazza, M. Novaga and A. Pluda,
    J. Reine Angew. Math., vol. 792, 189-221, 2022 (.pdf).
  162. Fractional mean curvature flow of Lipschitz graphs,
    A. Cesaroni and M. Novaga,
    Manuscripta Math., vol. 170 n. 3-4, 427-451, 2023 (.pdf).
  163. Isoperimetric planar clusters with infinitely many regions,
    M. Novaga, E. Paolini, E. Stepanov and V. Tortorelli
    Networks and Heterogeneous Media, vol. 18 n. 3, 1226-1235, 2023 (.pdf).
  164. Transverse domain walls in thin ferromagnetic strips,
    M. Morini, C. Muratov, M. Novaga and V. Slastikov,
    Arch. Rat. Mech. Anal., vol. 247 n. 3, Paper n. 59, 2023 (.pdf).
  165. Generation and motion of interfaces in a mass-conserving reaction-diffusion system,
    P. Miller, D. Fortunato, M. Novaga, S. Shvartsman and C. Muratov,
    SIAM J. Appl. Dyn. Syst., vol. 22 n. 3, 2408-2431, 2023 (.pdf).
  166. Local Hölder regularity of minimizers for nonlocal variational problems,
    M. Novaga and F. Onoue,
    Comm. Contemp. Math., vol. 25 n. 10, 2250058, 2023 (.pdf).
  167. On the shape of small liquid drops minimizing nonlocal energies,
    K. Bessas, M. Novaga and F. Onoue,
    ESAIM Control Optim. Calc. Var., vol. 29, Paper n. 86, 26 pp., 2023 (.pdf).
  168. Periodic partitions with minimal perimeter,
    A. Cesaroni and M. Novaga,
    Nonlinear Analysis, vol. 243, Paper n. 113522, 2024 (.pdf).
  169. Stability of the ball under volume preserving fractional mean curvature flow,
    A. Cesaroni and M. Novaga,
    Adv. Calc. Var., vol. 17 n. 2, 503-520, 2024 (.pdf).
  170. Time-fractional Allen-Cahn equations versus powers of the mean curvature,
    S. Dipierro, M. Novaga, and E. Valdinoci
    Physica D, Paper n. 134172, 2024 (.pdf).
  171. Stability analysis for the anisotropic curve shortening flow of planar networks,
    M. Grösswein, M. Novaga and P. Pozzi
    Partial Differ. Equ. Appl., vol. 5, Paper n. 28, 2024 (.pdf).
  172. A variational model of charged drops in dielectrically matched binary fluids: the effect of charge discreteness,
    C. Muratov, M. Novaga and P. Zaleski,
    Arch. Rat. Mech. Anal., vol. 248, Paper n. 76, 2024 (.pdf).
  173. L^1-gradient flow of convex functionals,
    A. Chambolle and M. Novaga,
    SIAM J. Math. Anal., vol. 56 n. 5, 5747-5781, 2024 (.pdf).



  174. Book chapters, Proceedings and Lecture Notes

  175. Some aspects of De Giorgi's barriers for geometric evolutions,
    G. Bellettini and M. Novaga,
    in "Calculus of Variations and Partial Differential Equations. Topics on geometrical evolution problems and degree theory",
    Springer, 115-151, 2000 (.pdf).
  176. The total variation flow,
    M. Novaga,
    in "Free boundary problems",
    Birkhäuser, Internat. Ser. Numer. Math., vol. 147, 225-236, 2004 ( .pdf).
  177. Geometric strong segregation theory for compositionally asymmetric diblock copolymer melts,
    C. Garcia-Cervera, C. Muratov, M. Novaga and G. Orlandi,
    in "Singularities in Nonlinear Evolution Phenomena and Applications",
    Edizioni della Normale, CRM Series, vol. 9, 171-182, 2009 (.pdf).
  178. An introduction to Total Variation for Image Analysis,
    A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock,
    in "Theoretical Foundations and Numerical Methods for Sparse Recovery",
    De Gruyter, Radon Series Comp. Appl. Math., vol. 9, 263-340, 2010 (.pdf).
  179. Total variation in imaging,
    V. Caselles, A. Chambolle and M. Novaga,
    in "Handbook of Mathematical Methods in Imaging",
    Springer, 1016-1057, 2011 (.pdf).
  180. Generalized minimal surfaces in Minkowski spaces,
    M. Novaga,
    in "Progress in Variational Problems - New Trends of Geometric Gradient Flow and Critical Point Theory",
    RIMS Kokyuroku, vol. 1740, 1-10, 2011 (.pdf).
  181. Existence and qualitative properties of isoperimetric sets in periodic media,
    A. Chambolle, M. Goldman and M. Novaga,
    in "Geometric Partial Differential Equations",
    Edizioni della Normale, CRM Series, vol. 15, 93-104, 2013 (.pdf).
  182. Limiting models in condensed matter physics and gradient flows of 1-homogeneous functionals,
    M. Novaga and G. Orlandi,
    in "Geometric Partial Differential Equations",
    Edizioni della Normale, CRM Series, vol. 15, 211-226, 2013 (.pdf).
  183. Asymptotic behavior of attractors for inhomogeneous Allen-Cahn equations,
    A. Cesaroni, C. Muratov and M. Novaga,
    in "Mathematical Analysis of Pattern Formation Arising in Nonlinear Phenomena",
    RIMS Kokyuroku, vol. 1924, 97-114, 2014 (.pdf).
  184. Existence and uniqueness for planar anisotropic and crystalline curvature flow,
    A. Chambolle and M. Novaga,
    in "Variational Methods for Evolving Objects",
    Advanced Studies in Pure Mathematics, vol. 67, 87-113, 2015 (.pdf).
  185. An introduction to BV functions in Wiener spaces,
    M. Miranda, M. Novaga and D. Pallara,
    in "Variational Methods for Evolving Objects",
    Advanced Studies in Pure Mathematics, vol. 67, 245-294, 2015 (.pdf).
  186. Asymptotic speed of propagation for a viscous semilinear parabolic equation,
    A. Cesaroni, N. Dirr and M. Novaga,
    ESAIM Proceedings and Surveys, vol. 54, 45-53, 2016 (.pdf).
  187. Lectures on curvature flow of networks,
    C. Mantegazza, M. Novaga and A. Pluda,
    in "Contemporary Research in Elliptic PDEs and Related Topics",
    Springer INdAM Series, vol. 33, 369-417, 2019 (.pdf).
  188. Elastic networks, statics and dynamics,
    M. Novaga and A. Pluda,
    in "The role of Metrics in the Theory of Partial Differential Equations",
    Advanced Studies in Pure Mathematics, vol. 85, 325-336, 2021 (.pdf).
  189. Uniqueness for a second order gradient flow of elastic networks,
    M. Novaga and P. Pozzi,
    in "Numerical Mathematics and Advanced Applications ENUMATH 2019",
    Lecture Notes in Computational Science and Engineering, vol. 139, 785-792, 2021 (.pdf).
  190. Local and Nonlocal Liquid Drop Models,
    M. Novaga and F. Onoue,
    in "Nonlinear Differential Equations and Applications",
    CIM Series in Mathematical Sciences, vol. 7, 221-234, 2024 (.pdf).
  191. Minimizing movements for hyperbolic obstacle-type problems and applications,
    M. Bonafini, V.P.C. Le, M. Novaga and G. Orlandi,
    in "Hyperbolic Problems: Theory, Numerics, Applications. Volume I (HYP 2022)",
    SEMA SIMAI Springer Series, vol. 34, 157-167, 2024 (.pdf).
  192. Minimal periodic foams with equal cells,
    A. Cesaroni and M. Novaga,
    Preprint, 2023 (.pdf).



  193. Preprints

  194. Rigidity of the ball for an isoperimetric problem with strong capacitary repulsion,
    M. Goldman, M. Novaga and B. Ruffini,
    to appear on J. Eur. Math. Soc. (.pdf).
  195. Evolution of networks with multiple junctions,
    C. Mantegazza, M. Novaga, A. Pluda and F. Schulze,
    to appear on Astérisque (.pdf).
  196. Lattice tilings minimizing nonlocal perimeters,
    A. Cesaroni, I. Fragalà and M. Novaga,
    to appear on Comm. Contemp. Math. (.pdf).
  197. Singularities of the network flow with symmetric initial data,
    M. Novaga and L. Sciaraffia,
    to appear on Interfaces and Free Boundaries (.pdf).
  198. Locally isoperimetric partitions,
    M. Novaga, E. Paolini and V. Tortorelli
    Preprint, 2023 (.pdf).
  199. Lattice tilings with minimal perimeter and unequal volumes,
    F. Nobili and M. Novaga
    Preprint, 2024 (.pdf).
  200. Minimal periodic foams with fixed inradius,
    A. Cesaroni and M. Novaga,
    Preprint, 2024 (.pdf).
  201. A charged liquid drop model with Willmore energy,
    M. Goldman, M. Novaga and B. Ruffini,
    Preprint, 2024 (.pdf).

Torna alla Pagina principale