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Abstract. Locally isoperimetric N -partitions are partitions of the space Rd into N regions

with prescribed, finite or infinite measure, which have minimal perimeter (which is the (d− 1)-

dimensional measure of the interfaces between the regions) among all variations with compact
support preserving the total measure of each region. In the case when only one region has infinite

measure, the problem reduces to the well known problem of isoperimetric clusters: in this case

the minimal perimeter is finite, and variations are not required to have compact support.
In a recent paper by Alama, Bronsard and Vriend, the definition of isoperimetric partition

was introduced, and an example, namely the lens partition, was shown to be locally isoperimetric

in the plane. In the present paper we are able to give more examples of isoperimetric partitions:
in any dimension d ≥ 2 we have the lens, the peanut and the Releaux triangle. For d ≥ 3 we

also have a thetrahedral partition. To obtain these results we prove a closure theorem which
enables us to state that the L1

loc-limit of a sequence of isoperimetric clusters is an isoperimetric

partition, if the limit partition is composed by flat interfaces outside a large ball. In this way

we can make use of the known results about standard clusters.
In the planar case d = 2 we have a complete understanding of locally isoperimetric partitions:

they exist if and only if the number of regions with infinite area is at most three. Moreover

if the total number of regions is at most four then, up to isometries, there is a unique locally
isoperimetric partition which is the lens, the peanut or the Releaux partition already mentioned.
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1. Introduction

The isoperimetric problem is to find a set E ⊂ Rd which minimizes its perimeter P (E) among
all sets with fixed measure |E| = m. It is well known that the solution to this problem (unique
up to translation) is the ball of volume m.

The isoperimetric problem can be extended to clusters, i.e. toN -uples of disjoint sets E1, . . . , EN

(regions) which have prescribed finite measure |Ek| = mk and which minimize the total surface
area of the interfaces. Since the common boundary between two regions is only counted once, the
regions in an isoperimetric cluster are indeed encouraged to share part of their boundary. This
effectively forms a cluster of bubbles. The existence of isoperimetric clusters with given measures is
guaranteed by the direct method of the calculus of variations [2]. The problem can be settled in the
family of sets with finite perimeter, also called Caccioppoli sets. The perimeter of a Caccioppoli
set is indeed lower semicontinuous with respect to L1 convergence of sets. Even if there is no
compactness (since Rd is unbounded) one can still use the tools of concentration compactness to
obtain a minimizer (see, for example, [13, 17]). Isoperimetric clusters are partially regular in the
sense that up to a closed singular set of zero (d − 1)-dimensional measure the boundary of each
region is a smooth hypersurface with constant mean curvature (see [2, 13]). In the planar case,
d = 2, the boundaries between two regions are composed by a finite number of circular arcs or
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Figure 1. The lens, the peanut and the Releaux partition.

straight lines segments, the singular set is composed by a finite number of points (vertices), and
in each vertex exactly three boundaries meet together with equal angles.

In the case N ≤ d+ 1 for any given N -uple of positive measures, there is a natural cluster, the
so called standard N -bubble (see Definition 3.1), which is conjectured to be the unique minimizer,
up to isometries, for the isoperimetric problem.

For N = 2 (double bubbles) isoperimetric clusters have been proven to be standard by Foisy
et al. [7] when d = 2, and by Hutchinson-Morgan-Ritoré-Ros [9] when d ≥ 2. For N = 3 (triple
bubbles) the result (isoperimetric clusters are standard) has been obtained by Wichiramala [24]
in the case d = 2, and by the recent results of Milman and Neeman [14] when d ≥ 2. For N = 4
the same result has been obtained again in [14] when d ≥ 4. For N = 5, d ≥ 5 in [15] the same
authors prove that standard clusters are isoperimetric. They also prove, [14, Theorem 1.9], that
any isoperimetric N -cluster of Rd, has connected regions if N ≤ d.

In the case N ≥ d + 2 there is no notion of standard cluster. But even in this case it is
conjectured that all regions comprising an isoperimetric cluster should be connected. Even in the
simplest case N = 4 and d = 2 the problem is open (but see [20, 19] for the case d = 2, N = 4
and equal areas).

Inspired by the paper [1] we are going to consider the case when some regions of the cluster may
have infinite measure. If E1, . . . , EN is a cluster in Rd we can add an external region E0 of infinite
measure to obtain a partition E0, E1, . . . , EN of the whole space Rd. An N -cluster can thus be
considered as an (N + 1)-partition where one of the regions has infinite measure, and the others
have prescribed finite measure. If we require two (or more) regions to have infinite measure then
the partition cannot have finite perimeter and hence it makes no sense to minimize the perimeter of
the whole partition. We are thus led to consider a different, local notion of minimizer as follows: a
partition is said to be locally isoperimetric if for every bounded set Ω the perimeter of the partition
in the interior of Ω is minimal among all partitions composed by regions with the same prescribed
measures whose difference (set theoretic symmetric difference) with the corresponding region of
the original partition is compactly contained in Ω (see Definition 2.2 below).

In [1] the authors consider the planar case d = 2 with |E0| = |E1| = ∞ > |E2| > 0, and introduce
the concept of locally isoperimetric partitions. Moreover they show that the lens partition, whose
boundary is composed by two symmetric arcs and two half lines joining with equal angles, (see
Figure 1) is, in fact, locally isoperimetric.

In this paper we investigate the properties of locally isoperimetric partition. First of all we
aim to prove a closure theorem. The idea is that isoperimetric clusters are a particular case of
partitions with a single infinite region. But any partition, even with two or more infinite regions,
can be seen as the limit (in the sense of L1

loc topology) of a sequence of clusters. We are not
currently able to show that the limit of any sequence of isoperimetric clusters is indeed a locally
isoperimetric partition: the problem is that the local volume constraint of the finite regions which
converge to an infinite region is lost in the limit. However we are able to prove a closure result
(see Theorem 2.13) which guarantees that such a limit is isoperimetric with respect to variations
which preserve the volumes not only of the finite regions but also of the infinite ones (since the
variations have bounded support one can put a constraint on the volume in a large ball, taking
into account that outside the ball the region coincides with its variation). Next we show that if the
limit partition is flat at infinity (see Definition 2.15) then we are able to prove that the constraint
on the infinite regions can be dropped because flat regions can be modified by a variation which
allows us to change the volume by any large amount with a small change of the perimeter (see
Theorem 2.16). These results allow us to find many examples of isoperimetric partitions in Rd. The
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lens partition in Rd is the limit of double bubbles hence we can state that it is locally isoperimetric
in any dimension. By taking the limit of a triple bubble we obtain the peanut partition, which
is composed by two finite and two infinite regions, in any dimension. Again, by considering the
limit of triple bubbles we obtain a partition with three infinite regions and only one finite region
that we call Releaux partition since in dimension d = 2 the finite region is a Releaux triangle. See
Figure 1. The other cases covered by the results of [14] are the partitions obtained as limits of
quadruple bubbles in Rd for d ≥ 4.

In the planar case we are able to find some more results. First of all we show that all locally
isoperimetric partitions can have only one, two or three infinite regions. Then we prove that if we
assign any number of areas for the finite regions, and we have from one to three infinite regions, a
locally isoperimetric partition, with the given areas, always exists (Theorem 4.3). This is achieved
by taking minimal clusters with the prescribed areas inside a ball whose radius is going to infinity.
The difficult point in this approach is that of proving that no mass escapes to infinity: it is here
that we need the assumption d = 2 and use some tools already developed for planar clusters. In
the cases of the examples above, namely the lens (two infinite and one finite region), the peanut
(two infinite and two finite regions), the Releaux triangle (three infinite and one finite region)
we can show that these example, up to isometries, are in fact the unique locally isoperimetric
partitions with their prescribed areas (Theorem 4.5).

In the Appendix we sketch how to adapt some statements on isoperimetric clusters, e.g. the so
called Almgren’s Lemma and the Infiltration Lemma, to limits of locally isoperimetric partitions,
to get volume density estimates and a priori boundedness of their regions with finite volume (see
also Theorem 2.4).

To summarize, in this paper we give a clear understanding of what locally isoperimetric parti-
tions in the plane look like. We have also many examples in higher dimension, which rely on the
corresponding results for clusters. These results are obtained by means of a closure theorem which
is valid in any dimension while in the planar case we adapt to infinite regions the tools already
developed in the study of planar clusters.

There are many questions left open. Of course any question which is open for the case of clusters
is open in the case of partitions. For example we do not know, in general, if the bounded regions
of an isoperimetric partition are connected. Also, in the case d ≥ 3, when we prove that standard
partitions are locally isoperimetric we are not able to prove that they are the unique example (up
to isometries) with their volume.

A particular case of isoperimetric partitions is the case when all regions have infinite measure.
In this case, since there are no volume constraints, isoperimetric partitions can be called locally
minimal partitions. If N = 2 and d ≤ 7 it is known that all locally minimal partitions are half-
spaces (see [22, 8]) For N = 2 and d ≥ 8 there are also minimal cones which are not hyperplanes,
for example Simons cone (see [5]) and Lawson cones (see [12]). These are examples of locally
isoperimetric partitions which are not standard. For N = 2 and d ≥ 9 it is possible to find locally
minimal partitions which are not cones (this is the Bernstein problem, see [5]). For any N in d = 3
all locally minimal conical partitions have been classified (see [23]): apart from the half-spaces
there are only the dihedral angle with 120 degrees and the tetrahedral cone. Of course a cylinder
over a locally minimal partition is also locally minimal, so we can produce many examples also in
higher dimension, but a complete classification is still missing in the case d > 3. There are also
a few more examples of minimal cones with N > 2 and d > 3: for N = d + 1 the cone over the
skeleton of the symplex (see [10]) and for N = 2d the cone over the skeleton of the hypercube (see
[6]).

Notice that in d ≥ 8 the Simons and Lawson cones are locally isoperimetric partitions which are
not eventually flat (see Definition 2.15). However, it seems reasonable that the flatness condition
that we have used in our examples could be replaced with the condition of having zero mean
curvature, with some decay at infinity of the second fundamental form. In this respect we could
expect to find a locally isoperimetric partition in R8 with prescribed volumes (1,∞,∞) which is
not eventually flat and hence is different from the lens partition with the same volumes.
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2. Notation and preliminary results

We shall denote by ωd the volume of the unit ball in Rd. A set E ⊂ Rd is said to be a Caccioppoli
set or set with locally finite perimeter if E is measurable and the distributional derivative D1E of
its characteristic function is a Radon vector measure. We define P (E,B), the perimeter of E in
B by means of the total variation of the characteristic function: ∥D1E∥ (B). We denote P (E,Rd)
by P (E) .

We identify Caccioppoli sets which differ by a set of measure zero. In particular we can always
choose a suitable representant of E so that the topological boundary coincides with the measure
theoretic boundary (see for example [13, proposition 12.19]):

∂E =
{
x ∈ Rd : ∀ρ > 0: 0 < |E ∩Bρ(x)| < |Bρ|

}
.

Notice that ∂E is a closed set. For a general measurable set E one can define a reduced boundary
∂∗E ⊂ ∂E comprising the points where the approximate outer normal unit vector νE can be defined
so that D1E = νE · ∥D1E∥. When E is a Caccioppoli set one has P (E,B) = Hd−1 (B ∪ ∂∗E), for
every borel set B.

Definition 2.1 (partition). Let E = (E1, . . . , EN ) be an N -uple of measurable subsets of Rd, and
Ω an open set. We say that E is an N -partition (of Ω), with regions E1, . . . , EN , if |Ek ∩ Ej ∩ Ω| =
0 for every k ̸= j and |Ω \

⋃
Ek| = 0.

The boundary ∂E of a partition is the set of all interfaces between the regions:

∂E :=

N⋃
k=1

∂Ek.

We define the perimeter of E on any borel set B ⊂ Rd as

P (E, B) :=
1

2

N∑
k=1

P (Ek, B), P (E) = P (E,Rd).

This quantity represents the (d−1)-dimensional surface area of the interfaces between the regions
Ek inside B. In fact when E is sufficiently regular (namely when Hd−1(∂Ek \ ∂∗Ek) = 0 for all k)
we have P (E, B) = Hd−1(∂E ∩B).

Notice that we do not require the regions of a partition to have positive measure. If some of the
regions have zero measure we say that the partition is improper, otherwise we say that it is proper.
Improper partitions are useful to describe the limit of a sequence of proper partitions when the
measure of some region goes to zero. Handling of improper regions is one of the difficulties we had
to face in Theorem 2.8 and Theorem 2.13.

Definition 2.2 (locally isoperimetric partition). We say that an N -partition E = (E1, . . . , EN )
of Ω ⊂ Rd is a locally isoperimetric partition if for every compact set B ⊂ Ω given any partition
F = (F1, . . . , FN ) such that for all k one has |(Ek△Fk) \B| = 0 and |Ek| = |Fk| one has

P (E, B) ≤ P (Fk, B).

If E = (E0, E1, . . . , EN ) is an (N + 1)-partition of Rd such that |Ek| < +∞ for all k ̸= 0 we
say that E is an N -cluster in Rd. The sets Ek are called regions of the cluster E. The region E0

necessarily has infinite measure ad hence is always unbounded. It is usually called the exterior
region. The cluster is determined by the N -uple (E1, . . . , EN ) of the finite regions (and this is
the usual definition in the literature) because E0 is uniquely determined as the complement of
the union of the other regions. We choose to add E0 to the definition so that N -clusters can be
regarded as a particular case of (N + 1)-partitions.



LOCALLY ISOPERIMETRIC PARTITIONS 5

Notice that if a partition has at least two regions with infinite measure (we will say: infinite
regions) then its perimeter is always +∞. Clusters, instead, can have finite perimeter in the whole
space, hence it is natural to give a global notion of minimizer for clusters.

Definition 2.3 (isoperimetric cluster). We say that the N -cluster E = (E0, . . . , EN ) is isoperi-
metric if for every other cluster F = (F0, . . . , FN ) with |Fk| = |Ek| for all k ̸= 0 one has

P (E) ≤ P (F).

Clearly every isoperimetric N -cluster E is also a locally isoperimetric (N + 1)-partition. The
converse statement is also true but requires a proof, see Proposition 2.11.

In the following theorem, we summarize some regularity results for locally isoperimetric parti-
tions, that can be proven with minor modifications from the analogue statements for isoperimetric
clusters (see the Appendix for a sketch of some of the proofs).

Theorem 2.4. Let E = (E1, . . . , EN ) be a locally isoperimetric N -partition in Rd. Then ∂E is
smooth outside a closed singular set of Hausdorff dimension at most d − 2: each interface is an
analytic hypersurface with locally constant mean curvature. The mean curvature is zero between
two infinite regions.

Moreover the following density estimates hold:

c0ωdr
d ≤ |Ek ∩B(x, r)| ≤ c1ωdr

d

for all x ∈ ∂E and r < r0, with c0 = c0(d,N), c1 = c1(d,N) and r0 = r0(E).
In particular, if |Ek| < +∞ then Ek is bounded.

Lemma 2.5 (upper estimate of perimeter). Let E = (E1, . . . , EN ) be a locally isoperimetric
N -partition in Rd. Then, for every x ∈ Rd and any R > 0, one has

P (E, BR(x)) ≤ C0 ·Rd−1

with C0 = C0(d,N) a constant not depending on E, x or R.

Proof. To simplify the notation suppose x = 0. For every ρ < R we can rearrange the regions of
E inside the ball BR into horizontal slices to construct a partition F = (F1, . . . , FN ) such that for
all k one has

(1) Fk \Bρ = Ek \Bρ,
(2) |Fk ∩Bρ| = |Ek ∩Bρ|,
(3) ∂∗(Fk ∩Bρ) ⊂ ∂Bρ ∪Πk ∪Π′

k where Πk and Π′
k are parallel (d− 1)-dimensional planes.

Since E is locally isoperimetric we have P (E, BR) ≤ P (F, BR) hence

2P (E, BR) ≤ 2P (E, BR \Bρ) + 2Hd−1(∂Bρ) + 2

N∑
k=1

Hd−1((Πk ∪Π′
k) ∩Bρ)

≤ 2P (E, BR \Bρ) + 2dωdρ
d−1 + 4Nωd−1ρ

d−1.

As ρ → R− we have P (E, BR \Bρ) → 0 and the result follows. □

The following lemma uses the coarea formula to estimate the cost in perimeter when two
Caccioppoli sets are joined together along the surface of a sphere.

Lemma 2.6 (glueing). Let E and F be Caccioppoli sets in Rd. Define

Gρ = (E ∩Bρ) ∪ (F \Bρ).

Then for all 0 < r < R one has∫ R

r

P (Gρ, ∂Bρ) dρ =

∫ R

r

[P (Gρ, BR)− P (E,Bρ)− P (F,BR \Bρ)] dρ

= |(E△F ) ∩ (BR \Br)| ,
so that the set of ρ ∈ (r,R) for which the estimate

P (Gρ, ∂Bρ) ≤
|(E△F ) ∩ (BR \Br)|

R− r
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holds, has positive measure.

Proof. For every ρ by additivity of measures one has P (Gρ, ∂Bρ) = P (Gρ, BR) − P (E,Bρ) −
P (F,BR \Bρ). Since E and F are Caccioppoli sets for almost all ρ ∈ [r,R] we have

P (E, ∂Bρ) = P (F, ∂Bρ) = 0.

In particular P (F,BR \ Bρ) = P (F,BR \ Bρ). Moreover for all these ρ, denoting by E1 and F 1

the points of density 1 of E and F respectively, we have (see for example [13, Chapter 15]):

P (Gρ, ∂Bρ) = Hd−1(∂∗Gρ ∩ ∂Bρ)

= Hd−1(((∂∗E) ∩Bρ ∩ ∂Bρ)△((∂∗F ) \Bρ ∩ ∂Bρ)) =

= Hd−1((∂∗(E ∩Bρ) ∩ ∂Bρ)△(∂∗(F \Bρ) ∩ ∂Bρ)) =

= Hd−1
(
(E1 ∩ ∂Bρ)△(F 1 ∩ ∂Bρ)

)
Integrating in dρ on the interval [r,R], and using coarea formula, we get the desired equality. □

Lemma 2.7 (perimeter estimate). Let E = (E0, . . . , EN ) be a locally isoperimetric (N + 1)-
partition in Rd which is an N -cluster, i.e. m = |E1|+ · · ·+ |EN | < +∞. Then

P (E) ≤ C < +∞
where C = C(d,N,m) does not depend on E.

Proof. Let us fix ε > 0. Since |Ek| < +∞ for k ̸= 0, we can find a radius R ≥ 1
ε so large that

|Ek \BR| < ε/N . Further enlarging R, we can also assume that BR compactly containsN pairwise
disjoint balls of volumes |Ek|, for k = 1, . . . , N . Since the partition has locally finite perimeter one
has that Hd−1(∂Bρ∩∂∗Ek) = 0 for all k ≥ 0. and almost all ρ > 0. Among these ρ > 0, by Lemma
2.6 (applied with ∅ in place of E, with Ek in place of F , and [R,R+1] in place of [r,R]) we can find
ρ = ρ(ε) ∈ (R,R+1) such that P (Ek \Bρ, BR+1)−P (Ek, BR+1 \BR) = P (Ek \Bρ, ∂Bρ) < ε/N ,
for all k ≥ 1. Hence we can consider a new partition F = (F0, . . . , FN ) such that:

(1) Fk \Bρ = Ek \Bρ, for all k = 0, . . . , N ,
(2) |Fk| = |Ek|, for all k = 0, . . . N ,
(3) for k ̸= 0 then the intersections Fk ∩Bρ are pairwise disjoint balls compactly contained in

Bρ with measure |Fk ∩Bρ| = |Ek ∩Bρ|,

(4) F0 = Rd \
N⋃

k=1

Fk,

Note that since Fk are Caccioppoli sets, and ∂Bρ can be viewed as the intersection of a decreasing
sequence of open sets on which P (F, ·) is finite, one has

P (F0, ∂Bρ) = P

(
N⋃

k=1

Fk, ∂Bρ

)
≤

N∑
k=1

P (Fk, ∂Bρ).

Now, since E is locally isoperimetric, and taking in account that BR is the intersection of a
decreasing sequence of open sets on which P (Fk, ·) is finite, we have

P (E, Bρ) ≤ P (F, Bρ) =
1

2

N∑
k=0

P (Fk, Bρ)

=
1

2

N∑
k=0

P (Fk, Bρ) +
1

2

N∑
k=0

P (Fk, ∂Bρ)

= Cd

∑
k=1

|Ek ∩Bρ|
d−1
d +

1

2

N∑
k=0

P (Fk, ∂Bρ) ≤ CdNm
d−1
d + ε.

Hence, since ρ > R ≥ 1
ε , letting ε → 0+, we get

P (E) ≤ CdNm
d−1
d .
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□

Theorem 2.8 (volume fixing, possibly improper, variations). Let Ω be an open subset of Rd. Let
F = (F1, . . . , FN ) be a (possibly improper) N -partition of Ω. For all k = 1, . . . , N with |Fk| > 0,
let xk ∈ Ω, and ρk > 0, be given so that the balls Bρk

(xk) are contained in Ω, are pairwise disjoint
and |Fk ∩Br(xk)| > 1

2ωdr
d for all r ≤ ρk.

Let A =
⋃

k Bρk
(xk). Then for every a = (a0, . . . , aN ) with ak ≥ − |Fk ∩Bρk

(xk)| when

|Fk| > 0, ak ≥ 0 when |Fk| = 0, and
∑N

k=1 ak = 0, there exists a partition F′ = (F ′
1, . . . , F

′
N ) such

that for all k = 1, . . . , N :

(1) F ′
k△Fk ⊂ A,

(2) |F ′
k ∩A| = |Fk ∩A|+ ak,

(3) P (F ′
k, A) ≤ P (Fk, A) + C1 ·

N∑
j=1

|aj |1−
1
d ,

with C1 = C1(d,N) not depending on F.

Remark 2.9. Notice that it is always possible to find such balls Bρk
(xk): since |Fk| > 0 just take

any point xk of full density in Fk, and ρk sufficiently small.

Remark 2.10. The previous theorem can be compared to the so called Volume fixing variations
theorem leading to Almgren’s Lemma (see Appendix 5.1, 5.2, [13, Theorem 29.14, Corollary 29.17])
with two important differences. First of all we do not require the regions to have positive measure.
This enables us to make a blow-down with regions having measure going to zero (see the proof
of Theorem 4.5). On the other hand our estimate (3) is weaker than in the usual volume fixing
variations theorem, since in (3) we have an exponent 1− 1

d instead of 1. If |Fk| = 0 the exponent

1 − 1
d is optimal in view of the isoperimetric inequality. Otherwise one could prove that the

exponent 1 − 1
d can be in fact replaced with 1 (this, however, requires a longer and more refined

proof which we prefer to avoid here).

Proof of Theorem 2.8. Let J = {j : aj < 0}. For all j ∈ J take rj such that
∣∣Fj ∩Brj (xj)

∣∣ = −aj .

By assumption 0 < −aj ≤
∣∣Fj ∩Bρj

(xj)
∣∣ and hence rj exists and 0 < rj ≤ ρj . Coinsider the sets

F ′′
k = Fk \

⋃
j∈J Brj (xj). Clearly we have |F ′′

k ∩A| ≤ |Fk ∩A| + ak for all k = 1, . . . , N so that

we are now required to add measure to each region. Since
∑

ak = 0 the total measure we need
to add, which is

∑
k |Fk ∩A| −

∑
k |F ′′

k ∩A| is exactly equal to the total measure of the balls we

have removed
∑

j∈J

∣∣Brj (xj)
∣∣. This means that it is possible to find a partition C = (C1, . . . , CN )

of
⋃

j∈J Brj (xj) with |Ck| = |Fk ∩A| − |F ′′
k ∩A| + ak ≥ 0. So we consider the partition F′ with

regions F ′
k = F ′′

k ∪ Ck to obtain the desired volumes:

|F ′
k ∩A| = |Fk ∩A|+ ak.

By construction F ′
k△Fk ⊂ A for all k = 1, . . . , N . To estimate the perimeter we observe that if

we choose C by making slices of the balls with parallel planes for each j ∈ J , we are adding at
most N slices, and also at most the perimeter of the ball. So the increase in perimeter is at most:

P (F′, Ā)− P (F, Ā) ≤
∑
j∈J

[
Nωd−1r

d−1
k + d · ωdr

d−1
k

]
.

Since, by assumption, |aj | =
∣∣Fj ∩Brj (xj)

∣∣ ≥ 1
2ωdr

d
j we have

rd−1
j ≤ 2

ωd
|aj |1−

1
d

hence, as desired,

P (F′, Ā)− P (F, Ā) ≤
∑
j∈J

2 · Nωd−1 + d · ωd

ωd
|aj |1−

1
d ≤ C1

N∑
j=1

|aj |1−
1
d .

□
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Proposition 2.11 (equivalence of isoperimetric clusters and locally isoperimetric partitions). If
E = (E0, E1, . . . , EN ) is an N -cluster in Rd then E is an isoperimetric N -cluster if and only if E
is a locally isoperimetric (N + 1)-partition.

By using Almgren’s Lemma (see Theorem 2.4, Lemma 5.2, Corollary 5.8) one could prove that
the regions with finite measure of a locally isoperimetric partition are, in fact, bounded. This would
make the following proof much easier, however are able to present a self contained proof which
uses Theorem 2.8 instead of the classical one, adapted to partitions (see Appendix Theorem 5.1,
and Lemma 5.2).

Proof of Proposition 2.11. Notice that any competitor in the definition of a locally isoperimetric
partition is also a competitor in the definition of an isoperimetric cluster, where we drop the
requirement of the variation to have compact support. Hence it is clear that an isoperimetric
cluster is an isoperimetric partition.

On the other hand let E = (E0, . . . , EN ) be a locally isoperimetric partition with |Ek| < +∞
for k ̸= 0 and let F = (F0, . . . , FN ) be a global variation i.e. a partition such that |Fk| = |Ek| for
k ̸= 0 (necessarily |F0| = |E0| = +∞). To prove that E is an isoperimetric cluster it is enough to
show that given any ε > 0 we have

P (E) ≤ P (F) + 2ε.

By Lemma 2.7 we know that each Ek has finite perimeter. Suppose also P (F) < +∞ (otherwise
there is nothing to prove).

Consider a large radius R̃ so that

N∑
k=1

|Fk \BR|+ |Ek \BR| < ε,

N∑
k=0

P (Fk \BR) + P (Ek \BR) < ε.

and define

F ′
k = (Fk ∩BR) ∪ (Ek \BR).

Since for k ̸= 0 the region Ek has finite measure and the complementary of E0 has also finite
measure, using Lemma 2.6 in an interval [R̃, R̃+ δ] we choose R > 0 large enough we get

P (F′) ≤ P (F, BR) + P (E,Rd \BR) + 2ε ≤ P (F) + 4ε.

Now applying Theorem 2.8 we can slightly modify F′ inside BR to obtain a partition G =
(G0, . . . , GN ) such that |Gk| = |Ek| and Gk△Ek is bounded for all k = 0, . . . , N . Hence we can
finally state that P (E) ≤ P (G). Whence

P (E) ≤ P (G) ≤ P (F′) + ε ≤ P (F) + 4ε.

□

Definition 2.12 (isoperimetric partition with mixed constraint). Let J ⊂ {1, . . . , N} be a fixed
set of indices. We say that an N -partition E = (E1, . . . , EN ) of an open set Ω is locally J-
isoperimetric, if, whenever we are given a compact set B ⊂ Ω and a partition F = (F1, . . . , FN ) of
Ω such that Fi△Ei ⊂ B for all i = 1, . . . , N , and |Fj ∩B| = |Ej ∩B| for all j ∈ J , then, we have,

P (E, B) ≤ P (F, B).

Theorem 2.13 (closure for J-isoperimetric partitions). Let J be a subset of {1, . . . , N} and let
Ek = (Ek

1 , . . . , E
k
N ) be a sequence of locally J-isoperimetric (possibly improper) N -partitions of

Ωk ⊂ Rd where Ωk is an increasing sequence of open sets such that
⋃

k Ωk = Rd. Suppose that
there exists E = (E1, . . . , EN ), a partition of Rd, such that for all j = 1, . . . , N , we have Ek

j → Ej

in L1
loc(Rd) as k → +∞.

Then E = (E1, . . . , EN ) is a locally J-isoperimetric partition of Rd.

Remark 2.14. Since given any K ⊂ Rd, compact set, one has Ωk ⊃ K for k large enough, the L1
loc

convergence makes sense in this setting.
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Proof. Let F = (F1, . . . , FN ) be a competitor to E i.e. an N -partition of Rd such that Fi△Ei ⋐ Rd

for all i = 1, . . . , N and |Fj \ Ej | = |Ej \ Fj | for all j ∈ J . For all j such that |Fj | > 0 we can take
any point xj ∈ Rd with full density in Fj . Then take ρj such that the hypotesis of Theorem 2.8
are satisfied. Define

µ =
1

N
· min
|Fj |>0

∣∣Fj ∩Bρj
(xj)

∣∣ .
Let A be the union of the balls Bρj

(xj) given by the Theorem. Let r > 0 be large enough so that
A ⋐ Br and Ei△Fi ⋐ Br for all i = 0, . . . , N . By slightly enlarging r we can also assume that
P (E, ∂Br) = P (F, ∂Br) = 0 and hence

(1) P (E, B̄r) = P (E, Br), P (F, B̄r) = P (F, Br).

Let ε > 0 be given. By possibly decreasing ρj we can assume that

(2) C1 ·N2 · µ1− 1
d ≤ ε

where C1 is the constant given by Theorem 2.8.
To conclude the proof it is enough to prove that

P (E, Br) ≤ P (F, Br) + 4ε.

First choose δ > 0, so that thanks (1)

(3) P (E, Br+δ) < P (E, B̄r) + ε = P (E, Br) + ε.

Then we can choose k ∈ N sufficiently large so that Br+δ ⋐ Ωk. Let

mi =
∣∣(Ek

i △Ei) ∩Br+δ

∣∣ .
By the L1

loc convergence of Ek to E, by taking k sufficiently large, we might also assume that for
all i = 1, . . . , N one has

mi ≤ µ, mi ≤
δ · ε
N

.(4)

Using the semicontinuity of perimeter we can finally also assume k so large that

(5) P (E, Br) ≤ P (Ek, Br) + ε.

Take now ρ ∈ (r, r + δ) and consider the N -partition Fk = (F k
1 , . . . , F

k
N ) of Ωk defined by

F k
i = (Fi ∩Bρ) ∪ (Ek

i \Bρ), i = 1, . . . , N

so that F k
i is a variation of Ek

i with compact support in B̄ρ.
By a suitable choice of ρ in the interval (r, r + δ), thanks to Lemma 2.6 and (4), we are not

spending too much perimeter:

(6)

∣∣P (Fk, B̄ρ)− P (F, B̄ρ)
∣∣ = P (Fk, ∂Bρ) ≤

1

δ

N∑
i=1

∣∣(Ei△Ek
i ) ∩Br+δ

∣∣
=

1

δ

N∑
i=1

mi ≤ ε.

To have a competitor to the minimality of Ek we need to slightly modify the partition Fk

in Ωk to satisfy the mixed volume constraint. To achieve this we want to apply Theorem 2.8,
modify the partition F inside of A ⋐ Br ⋐ Bρ ⋐ Br+δ ⋐ Ωk. Consider the sets of indices
K = {j ̸∈ J : |Fj | = 0} and L = {j ̸∈ J : |Fj | > 0} so that {1, . . . , N} = J ∪K ∪ L. Then define

aj =


∣∣Ek

j ∩Bρ

∣∣− ∣∣F k
j ∩Bρ

∣∣ if j ∈ J

c if j ∈ L

d if j ∈ K
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where c and d are defined by taking

S =
∑
j∈J

aj , c =

{
irrelevant if L = ∅
− S

#L if L ̸= ∅.
, d =


irrelevant if K = ∅
− S

#K if L = ∅
0 if L ̸= ∅.

We claim that
∑

aj = 0, as required by Theorem 2.8. Notice that since both Ek
j and F k

j cover
the whole ball Bρ we have

N∑
j=1

∣∣∣Ej
k ∩Bρ

∣∣∣− ∣∣F k
j ∩Bρ

∣∣ = 0.

So, if K = ∅ and L = ∅ the claim is verified. If L ̸= ∅ then d = 0 and, by definition,

N∑
j=1

aj = S +#L · c+#K · d = S − S + 0 = 0.

Otherwise, if L = ∅ then
N∑
j=1

aj = S +#K · d = S − S = 0.

Now we want to prove that aj ≥ −
∣∣Fj ∩Bρj

(xj)
∣∣ when |Fj | > 0 while aj ≥ 0 when |Fj | = 0,

as required by Theorem 2.8.
If j ∈ J we have F k

j ∩Bρ = Fj∩Bρ and |Fj ∩Bρ| = |Ej ∩Bρ| hence |aj | =
∣∣∣∣Ek

j ∩Bρ

∣∣− |Ej ∩Bρ|
∣∣ ≤∣∣(Ek

j △Ej) ∩Bρ

∣∣ = mj ≤ µ, by (4). If |Fj | > 0 we have µ ≤
∣∣Fj ∩Bρj (xj)

∣∣, by definition, and

hence aj ≥ −µ ≥ −
∣∣Fj ∩Bρj

(xj)
∣∣. If instead |Fj | = 0 just notice that aj =

∣∣Ek
j ∩Bρ

∣∣ ≥ 0 while

−
∣∣Fj ∩Bρj

(xj)
∣∣ ≤ 0.

If ℓ ∈ L we have |Fℓ| > 0 and aℓ = c. Hence

|aℓ| = |c| = |S|
#L

≤
∑
j∈J

|aj | ≤ N · µ ≤ |Fℓ ∩Bρℓ
(xℓ)|

by defintion of µ.
If h ∈ K we have ah = d and |Fh| = 0. So to satisfy the hypothesis of Theorem 2.8 we have to

prove that ah = d ≥ 0. If L ̸= ∅ by definition we have ah = d = 0 and the conclusion is trivial. If
instead L = ∅, i.e. |Fi| > 0 ⇒ i ∈ J , by definition ah = d = − S

#K , and, since we are dealing with

partitions, it follows:∑
j∈J

∣∣Ek
j ∩Bρ

∣∣ ≤ N∑
i=1

∣∣Ek
i ∩Bρ

∣∣ = N∑
i=1

|Fi ∩Bρ| =
∑
j∈J

|Fj ∩Bρ| ,

so that

−ah ·#K = S =
∑
j∈J

∣∣Ek
j ∩Bρ

∣∣− |Fj ∩Bρ| ≤ 0.

Notice that in particular we have |aj | ≤ N · µ, for all j = 1, . . . , N .
We are now in the position to apply Theorem 2.8 to Fk in A ⋐ Bρ, getting a partition Gk of

Ωk, such that

Gk
j△Fj = Gk

j△F k
j ⊂ A ⋐ Bρ, for all j = 1, . . . , N,(7) ∣∣Gk

j ∩Bρ

∣∣ = ∣∣Ek
j ∩Bρ

∣∣ , for all j ∈ J ,(8)

and, using (2),

(9) P (Gk, B̄ρ)− P (Fk, B̄ρ) ≤ C1 ·
N∑
j=1

|aj |1−
1
d ≤ C1 ·N2 · µ1− 1

d ≤ ε.
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We eventually obtain that Gk is a competitor to Ek with the correct mixed volume constraint.
Hence by local minimality of Ek one has:

(10) P (Ek, B̄ρ) ≤ P (Gk, B̄ρ).

So the proof is concluded, using (1), and letting δ → 0+ in the following inequality:

P (E, Br+δ) ≤ P (E, Br) + ε by (3)

≤ P (Ek, Br) + 2ε by (5)

≤ P (Ek, B̄ρ) + 2ε

≤ P (Gk, B̄ρ) + 2ε by (10)

≤ P (Fk, B̄ρ) + 3ε by (9)

≤ P (F, B̄ρ) + 4ε by (6)

≤ P (F, Br+δ) + 4ε.

□

Definition 2.15 (eventually flat partitions). We say that an N -partition E = (E1, . . . , EN ) of
Rd is eventually flat if for every pair i ̸= j of indices such that Ei and Ej have infinite measure
there exists a (d− 1)-dimensional half space contained in the interface ∂Ei ∩ ∂Ej .

Theorem 2.16 (volume fixing of large volumes). Let E = (E1, . . . , EN ) be an eventually flat
partition of Rd and let ε > 0 and a = (a1, . . . , aN ) be given. Suppose that

∑
ak = 0 and ak = 0 if

|Ek| is finite. Then for every r > 0, there exists R > r and a partition F of Rd such that for all
k = 1, . . . , N one has

Ek△Fk ⋐ BR \ B̄r

|Fk ∩BR| = |Ek ∩BR|+ ak

P (F, BR) ≤ P (E, BR) + ε.

Proof. By assumptions on ak we only need to fix the volumes of the regions with infinite volume.
Since the partition is assumed to be eventually flat, such regions have interfaces which contain
arbitrarily large flat (d − 1)-dimensional disks. To fix the volumes we can simply add or remove
a cylinder of very large radius and very small height with basis on such disks. This enables us to
obtain arbitrarily large changes in volumes with arbitrarily small change in perimeter. □

Theorem 2.17 (closure for locally isoperimetric partitions). Let Ek = (Ek
1 , . . . , E

k
N ) be a sequence

of locally isoperimetric partitions. Suppose that there exists E = (E1, . . . , EN ) a partition of Rd

such that Ek
i → Ei in L1

loc(Rd) and
∣∣Ek

i

∣∣→ |Ei| whenever |Ei| < +∞.
If E is eventually flat, then E is itself a locally isoperimetric partition.

Proof. Let J = {j : |Ej | < +∞}. For all j ∈ J , since
∣∣Ek

j

∣∣ → |Ej |, also
∣∣Ek

j

∣∣ < +∞ for k large

enough. This means that Ek is in particular locally J-isoperimetric. By Theorem 2.13 we hence
obtain that also E is locally J-isoperimetric. Let F = (F0, . . . , FN ) be a competitor to E in the
sense of local isoperimetricity. This means that Fj△Ej are bounded and that |Fj | = |Ej | for all
j = 0, . . . , N . In particular F is eventually flat as E. Let r > 0 be so large that outside Br the
two partitions E and F coincide. Define, for all j = 1, . . . , N ,

aj = |Ej ∩Br| − |Fj ∩Br| .
If Ej has finite measure, since Ej△Fj ⊂ Br, we have aj = 0. So for any ε > 0 we can apply
Theorem 2.16 to obtain a partition G which differs from F only inside a larger ball BR, which
agrees with F inside Br and such that

P (G, BR) ≤ P (F, BR) + ε.

Now we have |Gj ∩BR| = |Ej ∩BR| for all j = 1, . . . , N hence, by the J-isoperimetricity of E we
conclude that

P (E, BR) ≤ P (G, BR) ≤ P (F, BR) + ε
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and since E ane F agree outside Br we conclude

P (E, Br) ≤ P (F, Br) + ε.

□

3. Standard isoperimetric partitions

Definition 3.1. (See [14]). We say that a partition E = (E1, . . . , EN ) of Rd is standard if it can
be obtained as any stereographic projection of an equal-volume standard (N − 1)-bubble in Sd, i.e.
a partition of the sphere Sd which is the Voronoi partition corresponding to N equidistant points
in Sd as a subset of Rd+1.

If only one of the regions of a standard partition has infinite measure we say that the partition
is a standard cluster or standard bubble.

We call standard N -partition, or (N − 1)-bubble, of Sd, any stereographic projection of an
(N − 1)-cluster of Rd.

Remark 3.2. Standard N -partitions only exist for N ≤ d + 2. For N ≤ d + 2, (N − 1)-standard
clusters of Rd and N -standard partitions of Sd, are unique, up to isometries, if the volumes of the
regions have been fixed (see [3, 14]). It is conjectured that all isoperimetric (N − 1)-clusters in Rd

(recall that a (N − 1)-cluster is an N -partition) are standard when N ≤ d + 2. Each region of a
standard partition shares a boundary with every other region.

Lemma 3.3 (approximation of a standard partition by standard clusters). Let E = (E1, . . . , EN )
be a standard N -partition in Rd. Then there exists a sequence Ek = (Ek

0 , . . . , E
k
N ) of standard

(N − 1)-clusters which converge in L1
loc to E, and

∣∣Ek
i

∣∣→ |Ei|.

Proof. Let F be the Voronoi partition of Sd which corresponds to E by means of the stereographic
projection. If E is itself a cluster then ∂F does not contain the north pole of Sd. Otherwise with
an arbitrarily small rotation of F on Sd we obtain a partition F′ such that ∂F′ does not contain
the north pole, and it belongs to a fixed region F ′

j . The corresponding stereographic projection E′

will be a cluster in Rd and when the rotation converges to the identity we obtain L1 convergence
of the partitions F′ → F on the sphere and L1

loc convergence of their stereographic projections
E′ → E in Rd. Clearly if ∂Ei does not contain the north pole we have L1 convergence in a ball
containing Ei hence |E′

i| → |Ei|. Otherwise |Ei| = +∞ and |E′
i| → +∞. □

Corollary 3.4 (examples of locally isoperimetric partitions). If E = (E1, . . . , EN ) is a standard
N -partition of Rd and if we know that all standard (N − 1)-clusters of Rd are isoperimetric, then
E is locally isoperimetric.

Proof. If the partition E is a cluster then the result follows from Proposition 2.11. Otherwise
notice that the partition is eventually flat, because it is the stereographic projection in Rd of
a standard partition on the sphere Sd which has the north pole on the boundary. Each of the
interfaces joining at the north pole are contained in maximal (d − 1)-spheres in Sd so that their
stereographic projection is contained in a (d− 1)-dimensional plane in Rd. Moreover, each region
of a standard partition shares a boundary with every other region. So Definition 2.15 is satisfied.
The conclusion follows from Lemma 3.3, Theorem 2.17, and Proposition 2.11. □

By the results on standard clusters already mentioned in the introduction, the above corollary
assures that any standard N -partition of Rd is locally isoperimetric for N ≤ min{5, d+ 1} [14] or
N = 4 and d = 2 [24]. This enables us to give a lot of examples of locally isoperimetric partitions.

For N = 2 we have that half-spaces are locally isoperimetric partitions in every Rd. These can
be obtained as the limit of a ball with volume going to infinity. It is well known that the ball
solves the isoperimetric problem.

For N = 3 we have the lens partitions which is the partition of Rd composed by two half-spaces
and a lens-shaped region between them. The lens is composed by two symmetrical (d − 1)-
dimensional sphere caps joining in a (d− 2)-dimensional sphere lying in the plane containing the
interface between the two unbounded regions. This partition can be obtained as the limit of double
bubbles with a bubble converging to the lens and the other converging to an unbounded region.
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The isoperimetricity of double bubbles has been proven in [7] for d = 2, in [9] for d = 3 and in
[21] for all dimensions. This partition was already shown to be isoperimetric in [1].

Again for N = 3 and d = 2 we can have the triple junction partition of R2 composed by three
unbounded regions whose boundary is the union of three half-lines joining with equal angles in a
single point. If d > 2 we obtain a cylinder over the triple junction partition of R2. These partitions
can be seen, again, as the limit of a double bubble in Rd by letting the two volumes go to infinity.

For N = 4 we have the peanut partition which is a partition with two bounded and two un-
bounded regions obtained by merging together two lens partitions with a common planar interface.
The two lenses can have different volumes. This partition can be obtained as the limit of a triple
bubble with two bubbles converging to the two bounded regions and the third bubble converging
to an unbounded region. In the planar case, this partition has been described in [1] and in fact
was conjectured to be locally isoperimetric.

Again for N = 4 we have the Relaux partition, composed by one bounded and three unbounded
regions. It is obtained by adding three spherical slices to a triple junction partition. If d = 2 the
bounded region has the shape of a Reuleaux triangle. In d = 3 it has the shape of a Brazil nut.
This partition can be obtained as the limit of a triple bubble with one bubble converging to the
bounded region and the other two (symmetrical) bubbles converging to unbounded regions.

For N = 4 and d = 3 we can have the tetrahedral partition which is a cone-like partition
obtained by considering any regular tetrahedron and taking as regions each of the four cones with
vertex at the center of the tetrahedron generated by the four faces of the tetrahedron itself. This
partition, which is standard, is the blow up of a triple bubble in R3 centered in one of the two
points in common to all the four regions. For d > 3 we obtain a cylinder over the tetrahedral
partition of R3.

In the case d ≥ 3 we don’t know if these example are unique (up to isometries) with their
prescribed volumes. In fact, also for N ≤ min{5, d + 1}, we cannot exclude that, there exists a
locally isoperimetric partition F of Rd which is not the limit of standard clusters. In that case
we would have two different locally isoperimetric partitions, the standard one and a non-standard
one, with the same prescribed volumes. In the case d = 2 we have instead a uniqueness result,
Theorem 4.5.

The main result of [14] also gives examples of 5-partitions in Rd with d ≥ 4 which are locally
isoperimetric, we do not try to describe their geometry.

4. The planar case

The following theorem resumes well known properties of minimizers. See for example [16, 13, 2].

Theorem 4.1 (regularity of planar local minimizers). Let E = (E1, . . . , EN ) be a locally isoperi-
metric partition of an open set Ω ⊂ R2 i.e. a partition such that for any other given partition F
of Ω with |Fk ∩ Ω| = |Ek ∩ Ω| and Fk△Ek ⊂ B for some open bounded B ⋐ Ω, one has

P (E, B) ≤ P (F, B).

Then the following properties hold:

(1) ∂E is a locally finite graph composed by straight segments or circular arcs meeting in triples
with equal angles of 120 degrees;

(2) the three signed curvatures of the arcs meeting in a vertex have zero sum;
(3) it is possible to define a pressure pi for each i = 1, . . . , N such that the curvature of an

arc separating the regions Ei and Ej has curvature pi − pj (the sign is chosen so that the
curvature is positive when the arc has the concavity towards Ei)

If E is any partition satisfying the above properties we say that E is stationary. If E(t) =
(E1(t), . . . , EN (t)) is a one-parameter curve of partitions of Ω such that E(t0) is stationary, and
Ek(t) \B = Ek(t0) \B for some open set B ⊂ Ω, then one has

(11)

[
d

dt
P (E(t), B)

]
t=t0

=

N∑
k=1

pk ·
[
d

dt
|Ek(t) ∩B|

]
t=t0

where p1, . . . , pN are the pressures of the regions of E(t0).
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Theorem 4.2. Let E = (E1, . . . , EN ) be any locally isoperimetric N -partition of the plane R2.
Then ∂E is connected and the number of regions of E with infinite area is at least 1 and at most
3. If only one area is infinite then E is a bounded cluster. If two areas are infinite then ∂E
coincides with a straight line outside a sufficiently large ball. If three areas are infinite then ∂E
coincides, outside a sufficiently large ball, with three half-lines whose prolongations define angles
of 120 degrees with each other (but not necessarily passing through a single point).

Moreover the total number of all the connected components of all the regions is finite and if
we consider the union D of all the bounded connected components of all the regions, then D̄ is
connected.

Proof. By Theorem 2.4, see Corollary 5.8, we know that the regions with finite area are bounded.
By Theorem 4.1 we known that the boundary of the partition is a locally finite planar graph. Some
of the arcs of this graph might be unbounded, in that case we imagine that the arc has one or two
vertices of order 1 at infinity (which means that different unbounded arcs have different unbounded
vertices at infinity). All other vertices have order 3 because the regularity of the boundary in the
planar case states that exactly three edges can meet at a vertex point with equal angles of 120
degrees. Since the regions with finite measure are bounded we can find a large radius R > 0 such
that all the bounded regions are compactly contained in BR. Outside this ball the arcs of the
graph ∂E have zero curvature because we do not have any local constraint on the area enclosed by
infinite regions. So, outside BR, the graph ∂E is composed by straight lines (with two end-points
at infinity), lines segments (with two end-points in R2), or half-lines (with one end-point in R2

and one end-point at infinity).
We claim that every bounded closed (hence finite) loop contained in ∂E is contained in BR.

In fact take any bounded loop γ and suppose that there is an arc α not completely contained
in BR. The two regions separated by this arc have both infinite area, because the regions with
finite measure are all contained in BR. So that α has to be a straight line segment adjacent
to two connected components, each of just one among the two infinite-area regions. One of the
two infinite regions separated by α has a connected component C which is in the interior of the
loop γ and is adjacent to the arc α. If we remove α, and reassign this component C to the
other infinite-area region we strictly decrease the perimeter, while preserving the area constraints,
because we are exchanging a finite area between two regions with infinite area. This is also a
variation with compact support since γ is bounded. Hence we obtain a contradiction with the
local isoperimetricity of E.

Now we claim that the graph ∂E has a finite number of vertices (and hence a finite number of
edges since every vertex has finite order). Recall that all vertices of the graph have order 3 apart
from the vertices at infinity which have order 1 by convention. We will call bounded vertices the
vertices which are not at infinity. The estimate P (E, Bρ \ B̄R) ≤ P (E, Bρ) ≤ C0(2, N) · ρ (given
by Lemma 2.5) implies that the number of vertices at infinity is not larger than C0 because each
vertex at infinity is the end-point of an half-line which asymptotically gives a contribution of ρ to
the perimeter in the ball Bρ. So the graph has a finite number of vertices of order one at infinity,
in particular there is only a finite number of parallel entire straight lines.

Suppose now, by contradiction, that we have an infinite number of bounded vertices, which have
order three. Since there are only a finite number of arcs that are entire straight lines enlarging
R, we can suppose that outside BR there are no entire straight lines. Since the graph is locally
finite, we must have at least a sequence of bounded vertices going to infinity. Since the loops of
∂E are all contained in BR and since the graph ∂E is locally finite, we have a finite number of
closed loops. By removing a finite number of arcs in BR we obtain a subgraph Γ without cycles,
which is composed by a finite number of trees, each one touching BR. So in Γ (and hence in ∂E)
it is possible to find a tree with infinitely many vertices of order three. This tree contains hence
infinitely many disjoint paths each composed by infinitely many arcs: each such path must go to
infinity because the graph is locally finite. But this, again, is in contradiction with the estimate
P (E, Bρ) ≤ C0 · ρ.

Since the graph ∂E is finite, by further enlarging R we might suppose that BR contains all
the bounded vertices of the graph so that ∂E \ BR is composed by a finite number, let say n,
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BR

Figure 2. The modification performed in the proof of Theorem 4.2 when two
rays have the same direction.

Figure 3. The rotation performed in the proof of Theorem 4.2. We can suppose
that the two non collinear half-lines are emitted at diametrically opposite points
of BR.

n ̸= 1, of disjoint half-lines emitted by BR and going to infinity. These half lines, have all different
directions towards infinity, because if we had two parallel half-lines with the same direction we
could easily merge them into a single long segment and then split it again to obtain a partition
with smaller perimeter (see Figure 2).

Now we can consider a blow-down of E. By letting Ek = E
k be a rescaled partition of E we easily

notice that Ek converges in L1
loc as k → +∞ to a partition E∞ of R2 delimited by n half-lines

with a common vertex at the origin, each line parallel to the n-half-lines of E \BR. Since each Ek

is a locally J-isoperimetric partition, with J being the set of indices of the finite regions of E, by
Theorem 2.13 we deduce that also E∞ is a locally J-isoperimetric partition. However for j ∈ J

the regions Ek
j =

Ej

k converge to the empty set because Ej is bounded. So, we can remove the

regions E∞
j from E∞ and obtain a locally isoperimetric partition of R2 composed by n angles with

a common vertex in the origin. These angles cannot be smaller than 120 degrees (by the general
regularity results or by simple geometric considerations) hence n ≤ 3. In the case n = 0 the graph
∂E has no vertices at infinity and hence the partition E is a cluster. In the case n = 3 we have
that ∂E \ B̄R is made of three half-lines going to infinity with relative angles of 120 degrees.

In the case n = 2 we have that ∂E \ B̄R is made of two half-lines going to infinity at opposite
directions. In this case we claim that the two lines are collinear (i.e. are contained in the same
straight line).

In fact if they were not collinear we could rotate the bounded cluster to which they are attached,
creating two angles in the half-lines and strictly decreasing the perimeter (see Figure 3).

We now claim that ∂E is connected. Consider a connected component of ∂E. If it is bounded,
then it is the only connected component, otherwise we could move it until it touches another
component and this would contrast with the local regularity (Theorem 4.1). Otherwise every
connected component is unbounded. But it must have at least two half-lines going to infinity
because otherwise the line would have the same region on both sides. Since we know that the
total number of half-lines is at most 3 we conclude that there is a single connected component.

Let us now consider the set D which is the union of all the bounded connected components of
all regions and let D1, . . . , Dm be the connected components of D̄. The connected components
are all contained in the large ball, hence they are a finite number by known regularity results (see
Theorem 4.1). The unbounded connected components are all components of the infinite regions
E1, . . . , En and, by the previous discussion, we have exactly one unbounded component for each
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infinite region and n = 1, 2, 3. If n = 1 we are in the case of a cluster and it is known, in this case,
that D̄ is connected (otherwise move D1 and let it bump against the rest of the cluster). So we
are left with the cases n = 2, 3. From now on suppose, by contradiction, that m > 1.

Consider an abstract planar graph Γ which has, as edges, the arcs of ∂E separating two un-
bounded connected components of two (infinite) regions. These arcs have zero curvature and can
be half-lines (n half-lines going to infinity) or straight line segments ending either in one of the
components Dk or in a triple point where three infinite regions meet. So the vertices of the graph
are represented by the components D1, . . . , Dm, by n vertices at infinity and by the triple points
separating three infinite regions (only possible if n = 3). The vertices at infinity have order 1 by
construction.

The graph Γ is connected because if not also ∂E would be disconnected. Now we claim that
this graph Γ contains no cycles and hence is a tree. In fact, if we had a cycle in Γ, we could
consider any edge α of this cycle and consider the infinite region Ek adjacent to α on the interior
of the cycle. The connected component of Ek adjacent to α is bounded, being inside the cycle
(notice that the cycle cannot pass through the points at infinity because they have order 1 by
construction). This is not possible because the arcs of Γ separate two unbounded components by
definition.

Let us show that the vertices of Γ represented by a component Dk must have order at least
3. If Dk had order 0 and since m > 1 we could move Dk until it touches some other arc of the
partition, violating the regularity results of Theorem 4.1. If Dk has order 1, the single arc would
have the same region on both sides, which is not possible. If Dk has order 2 then it is adjacent to
two straight arcs. These two arcs must be parallel, otherwise we could decrease the local perimeter
by translating Dk towards the interior of the convex angle formed by the two lines containing the
arcs, so that both arcs become shorter. Moreover they are collinear, because otherwise we could
rotate the component Dk (see Figure 3). Notice now that it cannot happen that both arcs joining
Dk are going to infinity because either Dk is the only component (and hence n = 2 and m = 1 as
we want to prove) or the graph Γ would be disconnected. So, if we move Dk along the bounded
arc, the partition does not change perimeter and preserves the area constraints but, eventually,
it would bump against another component or a triple point, violating the regularity properties of
Theorem 4.1.

At this point we have proven that the graph Γ is a tree with exactly n vertices of order 1
(terminal points) and all other vertices of order at least 3. A simple combinatorial inductive
argument (remove the terminal points one by one) shows that we cannot have more than one
vertex of order at least 3, since each such vertex increases the number of terminal points of the
tree. So we are either in the case n = 2 and m = 0, or in the case n = 3 and m ≤ 1. □

Theorem 4.3 (existence). Let mk ∈ [0,+∞] for k = 1, . . . , N be a given N -uple of areas such
that at least one and at most three of the mk are infinite. Then there exists an isoperimetric
partition E = (E1, . . . , EN ) of R2 whose regions have the prescribed measures.

If all the areas are finite or at least four of them are infinite then there are no isoperimetric
partitions with the prescribed measures.

Proof. Theorem 4.2 guarantees that in a locally isoperimetric partition there are at least one and
at most three infinite areas, so the second part of the statement has already been proved.

Let M be the number of infinite areas, 1 ≤ M ≤ 3. Without loss of generality suppose that
the infinite areas are the first M : m1 if M = 1, m1,m2 if M = 2 and m1,m2,m3 if M = 3 while
mk < +∞ for k = M + 1, . . . , N .

If M = 1 there exists an isoperimetric (N − 1)-cluster (E2, . . . , EN ) with the prescribed finite

measures m2, . . . ,mN . By adding the external region E1 = R2 \
⋃N

k=2 Ek we obtain a locally
isoperimetric partition with the given measures |Ek| = mk for k = 1, . . . , N .

We now consider the cases M = 2 and M = 3. If M = 2 we let C = (C1, C2, ∅, . . . , ∅) be
an N -partition such that ∂C is a straight line passing through the origin. If M = 3 we let
C = (C1, C2, C3, ∅, . . . , ∅) be an N -partition such that ∂C is the union of three half-lines emitted
by the origin with equal angles of 120 degrees.
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In both cases we consider a radius R > 0 so large that |BR| > mM+1 + · · · + mN . We then
consider the family of all partitions E of R2 which coincide with C outside of BR and such that
|Ek| = mk for k = M + 1, . . . , N . In this family we minimize P (E, BR) (thus taking into account
also the length of ∂BR ∩ ∂E). By compactness and semicontinuity we know that a minimizer
ER always exists. The minimizer, restricted to BR, is a J-isoperimetric partition of BR with
J = {M + 1, . . . , N} (see Definition 2.12). The idea is now to let R → ∞ and prove that the
minimizers of the problem in BR converge to a local minimizer in R2. The difficulty is to prove
that the components with finite area are not going to infinity. The rest of the proof is devoted to
this.

We are going to complete the proof in the case M = 3. The case M = 2 is similar but simpler
so we don’t treat it here.

Step 1: obtaining an estimate on the perimeter of the bounded components. Let R be fixed and
let E = ER be a minimizer of the auxiliary problem stated above. Let us define D to be the
union of all the bounded connected components of the regions E1, . . . , EN . Since the bounded
components are all contained in B̄R we have that D ⊂ B̄R and since E4, . . . , EN are bounded
we have D ⊃ E4 ∪ · · · ∪ EN . Moreover D will also contain the bounded connected components
of E1, E2, E3, if they exist. For j = 1, 2, 3 let E′

j = Ej \ D be the only unbounded connected

component of Ej and consider the following partitions of R2:

F1 = (E′
1 ∪D,E′

2, E
′
3), F2 = (E′

1, E
′
2 ∪D,E′

3), F3 = (E′
1, E

′
2, E

′
3 ∪D),

and
G = (E′

1, E
′
2, E

′
3, D).

Let ∂C ∩ ∂BR = {p1, p2, p3} be the three fixed points on ∂BR enumerated so that the half-line
terminating in pj is non contained in ∂Ej , for j = 1, 2, 3. Notice that

P (F1, B̄R) = H1((∂E′
2 ∪ ∂E′

3) ∩ B̄R).

Since E′
2 is simply connected we know that ∂E′

2 ∩ B̄R is a compact and connected set containing
the two point p1 and p3. Analogously ∂E′

3 ∩ B̄R is a compact connected set containing p1 and
p2. Hence (∂E′

2 ∪ ∂E′
3) ∩ B̄R is a compact connected set containing {p1, p2, p3}. We know that

the shortest compact connected set containing {p1, p2, p3} is the classical Steiner tree on the three
vertices, which is known to have length 3R (see, for example, [18]). The same reasoning can be
applied to the other two partitions so we have

P (F1, B̄R) + P (F2, B̄R) + P (F3, B̄R) ≥ 9R.

On the other hand we have

P (F1, B̄R) = H1(∂E′
1 ∩ ∂E′

2) +H1(∂E′
1 ∩ ∂E′

3) +H1(∂E′
2 ∩ ∂E′

3) +H1(∂D)−H1(∂E′
1 ∩ ∂D)

and analogously for F2 and F3. Summing up we obtain

9R ≤ 3
[
H1(∂E′

1 ∩ ∂E′
2) +H1(∂E′

1 ∩ ∂E′
3) +H1(∂E′

2 ∩ ∂E′
3)
]
+ 2P (D)

= 3P (G, B̄R)− 2P (D)

And since P (G, B̄R) ≤ P (E, B̄R) we obtain

P (D) ≤ 3P (E, B̄R)− 9R.

Now it is not diffucult to estimate P (E, B̄R) by taking a competitor of E composed by the triple
junction C with N −M balls with given areas. This implies that

P (E, B̄R) ≤ 3R+ 2π

N∑
k=4

√
mk

π

In conclusion we have found

P (D) ≤ d := 6
√
π

N∑
k=4

√
mk.

Step 2: proving that there is a single “component”. This is similar to what we did in the proof
of the second part of Theorem 4.2. We consider the connected components D1, . . . , Dm of D̄ and
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p1

p2p3

E2 E3

E1

D1

D2
D3

D4

Figure 4. The components D1, . . . , D4 in the proof of Theorem 4.3 Step 2.

call them components. The arcs of ∂E which are not contained in D̄ are separating two of the
infinite regions. Having no constraint on the area of these regions we conclude that such arcs are
straight line segments. The union of D̄ with these segments is a compact connected set containing
the three points p1, p2, p3. It is connected because otherwise the three external components E′

1,
E′

2 and E′
3 would not be separated by ∂E.

Now we would like to prove that the components of D̄, if R is large enough, are not touching
the boundary of BR. To this aim, we consider another (auxiliary) minimization problem where
we take any possible rigid motion of each connected component of D̄ (in the whole plane) and any
possible union of straight line segments so that the union of the components and the segments is
a compact connected set containing the three points p1, p2, p3 (see Figure 4). This problem has a
solution since we only need to fix the position of a finite number of segments and the total length
of the segments is continuous and coercitive with respect to the position of the end-points of the
segments. The components of D̄ are originally contained in BR but now we allow to move them
anywhere in the plane. We will see that, for R large enough, the original partition E is a minimizer
also for this auxiliary problem.

Consider any minimizer of the auxiliary problem. By minimality, the segments have disjoint
interiors and their end-points are either points of the boundary of the components, or the points
p1, p2, p3, or else triple junctions of three segments. The configuration is described by an abstract
graph Γ whose vertices are the components of D̄ and the three points p1, p2, p3 and whose arcs
are the segments joining them. If a component is touching one of the points pj (j = 1, 2, 3),
we pretend that there is a degenerate segment of length zero joining pj to the component. The
resulting graph Γ is connected because of the corresponding requirement on the union of the
segments and the components. Also we can suppose that Γ has no cycles because otherwise we
could remove a segment of the cycle and decrease the total length preserving the connectedness.
Hence Γ is a tree. A vertex represented by a component of D̄ has order at least two because
otherwise it would have a single segment attached to it and we could move the component along
the segment to decrease the total length until the component touches another component. When
two components touch each other we can merge them into a single component. At the end of
this process we obtain a graph where the only vertices or order one are among the three points
p1, p2, p3. A simple combinatorial argument shows that such a tree, having at most three terminal
vertices, can have at most one vertex of order three while all other non terminal vertices have
order two. See Figure 4.

We can now eliminate all vertices of order two. First we notice that we can suppose that the
two segments emitted by a component of order two are collinear. In fact if they are not, we could
translate the component together with the two end points on it, so that both the the segments
become shorter. We can do this until the segments become collinear or until the component
touches another component. In the latter case we can merge the two components as they touch
and consider them as a single component repeating the argument from the beginning. Now, if the
two segments emitted by a component of order two are collinear, we can translate the component
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along the common line containing them until it touches another component or a triple point.
Iterating this procedure we can eliminate all vertices of order two.

Step 3. Equi-boundedness of the component. Let q be any point such that the component is
contained in B̄d(q). We claim that for R large enough we have |q| ≤ 3

√
dR. Suppose this is not

true and we can have a sequence of R → +∞ such that for such values of R one has |q| ≥ 3
√
dR.

Clearly the total length of the three segments emitted by the component, is not smaller than
|p1 − q|+ |p2 − q|+ |p3 − q| − 3d. If we translate the component so that p goes into the origin, we
obtain a competitor such that the total length of the three segments is smaller than 3R. So we
have

|p1 − q|+ |p2 − q|+ |p3 − q| − 3d ≤ 3R.

Consider the function

ℓ(t) =
1

R
inf

|p|≤tR
(|p− p1|+ |p− p2|+ |p− p3|).

By definition we have

|p1 − q|+ |p2 − q|+ |p3 − q| ≥ R · ℓ
(
|q|
R

)
.

Let t = 3
√

d/R and notice that t → 0+ as R → +∞ since d does not depend on R. Since
|q| /R ≥ t and ℓ is increasing, we have R · ℓ(t) ≤ 3R + 3d. In Lemma 4.4 below, we prove that
ℓ(t) ≥ 3 + 3

4 t
2 + o(t2) as t → 0 so we have

3 +
3

4
t2 + o(t2) ≤ 3 + 3

d

R
= 3 +

3

9
t2

which gives the contradiction 3
4 t

2 + o(t2) ≤ 1
3 t

2.
Step 4. Letting R → +∞. For each sufficiently large R we consider the minimizer given by

Step 3 and call it ER to make explicit the dependence on R.
We know that the finite regions ER

k , k = 4, . . . , N of ER are all contained in a ball of radius d

centered in some point qR such that |qR| ≤ 3
√
dR. Hence the translated regions FR

k = ER
k − qR,

for k > 3, are all contained in the same ball Bd. So there is a sequence Rn → ∞ and measurable
sets F4, . . . , FN such that for all k > 3 one has FRn

k → Fk in L1.

Moreover, since |qR| ≤ 3
√
dR ≪ R, we notice that the translated balls BR(−qR) invade the

whole plane as R → +∞. So, up to a subsequence, each of the three rays emanating from the
component of ERn must converge to a ray which has the same direction of the corresponding ray
of the reference cone C. These rays divide the complement of the union of the regions F4, . . . , FN

into three regions F1, F2, F3 which are thus the L1
loc limit of the corresponding regions FRk

1 , FRk
2 ,

FRk
3 as k → +∞. So we have found a partition F = (F1, . . . , FN ) of R2 which is the L1

loc limit
of the partitions FRk of the balls BRk . Clearly |F1| = |F2| = |F3| = +∞ and |Fk| = mk for
k = M + 1, . . . , N .

The partitions ERn are all locally J-isoperimetric in Ωn = BRn
− qRn

with J = {4, . . . , N} and
hence, by Theorem 2.13, we obtain that F is locally J-isoperimetric in R2. But this is equivalent
to say that F is locally isoperimetric in R2, which is our conclusion.

The proof for the case M = 2 is similar but much simpler. In that case, in Step 3 we have a
single component D connected to two diametrically opposite points p1 and p2 by means of two
collinear segments. Translating the component along the segments we can place the component
D inside the ball Bd centered in the origin. So we have qR = 0 and also Step 4 is simpler because
we don’t need any estimate on |qR|. □

Lemma 4.4. Let p1, p2, p3 be the three vertices of a regular triangle inscribed in the unit circle
∂B1 centered in the origin of the plane R2. Let q be any point and let Σq = [q, p1]∪ [q, p2]∪ [q, p3]
be the union of the three segments joining q with the vertices of the triangle. Let

ℓ(t) = inf
{
H1(Σq) : |q| ≥ t

}
.
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Then the infimum is attained, ℓ is increasing, and, for t → 0+, one has

ℓ(t) ≥ 3 +
3

4
t2 + o(t2).

Proof. By assumption we have |pi| = 1, p1 + p2 + p3 = 0. Since the function q 7→ H1(Σq) is
coercitive and convex on R2, the infimum defining ℓ(t) is attained in a point q such that |q| = t.
The proof is concluded by the following computation:

H1(Σq) =

3∑
i=1

|q − pi| =
3∑

i=1

√
1 + t2 − 2⟨q, pi⟩

=
√

1 + t2
3∑

i=1

√
1− 2

⟨q, pi⟩
1 + t2

= (1 + t2 + o(t2))

3∑
i=1

[
1− ⟨q, pi⟩

1 + t2
− 1

4

(
⟨q, pi⟩
1 + t2

)2

+ o(t2)

]

= (1 + t2 + o(t2))

[
3− 1

4

3∑
i=1

(
⟨q, pi⟩
1 + t2

)2

+ o(t2)

]

≥ (1 + t2 + o(t2))

[
3− 3

4
t2 + o(t2)

]
=
(
1 + t2 + o(t2)

)
·
[
3− t+ o(t2)

]
= 3 +

3

4
t2 + o(t2).

□

Theorem 4.5 (uniqueness). Let E be any locally isoperimetric N -partition of the plane R2 with
N ≤ 4. Then E is standard. This means that in the planar case the standard partitions, enumer-
ated in section 3, are the only locally isoperimetric partitions with their given areas.

Proof. For N = 1 there is only one (trivial) partition E = (R2).
For N = 2 the cluster cannot have triple points hence the boundary is either a circle or a single

straight line: both are standard.
Consider the case N = 3. If we have a single region with infinite area then we have a standard

double-bubble cluster.
If we have two regions with infinite area then, by Theorem 4.2 we know that outside a large ball

the interface is contained in a single line separating the two unbounded regions while the region
with finite measure is contained in the ball. By the second part of Theorem 4.2 if we remove
the two half-lines, we obtain that the set D̄, which is the closure of the union of all the bounded
connected components of the regions, is connected. We claim that D̄ coincides with (the closure
of) the region of finite area E3. Indeed, since every component is simply connected, a bounded
connected component of a region of infinite area (say E1) necessarily touches a component of the
other region of infinite are (say E2), contradicting the minimality by deleting the common edge. It
follows that E3 is also connected and simply connected. This implies that E3 is a single two-sided
component and the cluster is a lens cluster.

Suppose now that N = 3 and we have three regions with infinite area. By Theorem 4.2, there
are three half-lines emanating from the component. The three half lines separate three unbounded
connected components, say C1, C2 and C3, of the three regions E1, E2 and E3. We claim that
in this case all the regions are connected. In fact suppose that a region, say E1, is disconnected
and take a bounded connected component C of E1. If we give C to any other component of the
partition we strictly decrease the perimeter without changing any prescribed area, since they are
all infinite. Since all the regions are connected the component must be empty and what we get is
a partition whose boundary is composed by three half lines joining with equal angles at a triple
point: this is the triple junction.

Suppose now that N = 4. If we have only one region with infinite measure than the partition
is a cluster and it is known that it must be a standard triple bubble. By Theorem 4.2 we cannot
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have four regions with infinite measure. If we have three regions with infinite area, Theorem 4.2
tells us that the boundary of the partition contains three half-lines emanating by the component
D. The three half lines separate three unbounded connected components C1, C2 and C3 of three
regions, say respectively E1, E2 and E3. As in the case N = 3 with two infinite regions, we can
easily state that the external arcs of D must be adjacent to a component of the fourth region
E4 in the inside, otherwise by removing the arc we decrease the perimeter leaving the area of E4

unchanged. So the set D contains a single component of E4 which must be a triangular region.
Since all angles are of 120 degrees and the three half lines also define angles of 120 degrees one
with the other, we conclude that the only possibility is that E4 is a Reuleaux triangle, and the
partition is a Reuleaux partition.

The last case is N = 4 with only two regions with infinite measure. In this case Theorem 4.2
tells us that the boundary of the partition contains two collinear half lines emanating from a
bounded component. The rest of the proof is devoted to this case, which is much harder than the
previous ones.

We will use some of the ideas from [11]. Let E = E(m3,m4) be a locally isoperimetric partition
with measures (+∞,+∞,m3,m4) and let F = F(m3,m4) be the peanut partition with the same
measures. If E(t) is a one-parameter family of partitions and E = E(t0) is a stationary partition
we have

(12)

[
d

dt
P (E(t), BR)

]
t=t0

=

N∑
k=1

pk

[
d

dt
|Ek|

]
t=t0

where pk are the pressures of the regions Ek of E.
By the considerations above, we know that there is a ball BR such that ∂E\BR is contained in

a straight line. By translating we can also assume that such a line is passing through the origin,
which is the center of the ball. Do the same for F. Since we know that F is locally isoperimetric
(Theorem 3.4) we have P (E, BR) = P (F, BR). Now define

P̃ (E) = P (E, BR)− 2R

and notice that this definition does not depend on R, and that (11) holds true for P̃ as well, with

B = BR, since P (E, BR) differs from P̃ (E) by a constant depending only on R.

Claim 1: the function m3 7→ P̃ (F(m3,m4)) is increasing in both variables. In fact by using
formula 11 with F(t) = F(t,m4) we get

d

dt
P̃ (F(t)) = p(t)

where p(t) is the curvature of the external arcs of F3(t,m4) which is clearly positive. Similarly,
for the other variable.

Claim 2: the infinite regions E1 and E2 of the locally isoperimetric partition E are connected.
Otherwise one of the two, say E1, would have a connected component C. If we give C to a
neighbouring region we would find a partition E′ with strictly less perimeter than E and without
decreasing any of the two prescribed area. This is impossible because the corresponding standard
partition F′ with the same areas of F would have strictly less perimeter that F, which is not
possible by the previous claim.

Claim 3: the regions of E have the same pressures of the regions of F. Notice that both E3

(and the same is true for E4) has an edge in common with at least one of the two infinite regions
E1, E2 (say E1) because otherwise E3 would be completely surrounded by E4 and E4 would not
be simply connected. If α is an arc separating E3 from E1 we know by Theorem 4.1 that the
curvature of α is p3−p1 = p3, since p1 = 0. Consider a one family of clusters E(t) with E(0) = E0

and such that for t varying in a neighborhood of t = 0 the arc α is replaced with an arc with
curvature p3 + t while the rest of the cluster is unchanged. Let F(t) = F(|E3(t)| ,m4) be the
peanut partition with the same measures as E(t) so that F(0) = F(m3,m4). Let q3 and q4 be the
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pressures of the regions F3 and F4 of F. Since |Ek(t)| = |Fk(t)| we have that[
d

dt
P̃ (F(t))

]
t=0

= q3

[
d

dt
|F3(t)|

]
t=0

+ q4

[
d

dt
|F4(t)|

]
t=0

= q3

[
d

dt
|E3(t)|

]
t=0

(13) [
d

dt
P̃ (E(t))

]
t=0

= p3

[
d

dt
|E3(t)|

]
.(14)

Now notice that P̃ (E(t)) ≥ P̃ (F(t)) for all t, since F(t) is locally isoperimetric. Moreover,

P̃ (E(0)) = P̃ (F(0)) because E is also isoperimetric. Hence P̃ (E(t))−P̃ (F(t)) has a local minimum
at t = 0, and from (13) we deduce q3 = p3. Repeating the same argument with an external arc
of E4 we obtain also q4 = p4. So the pressures of E coincide with the pressures of F: pi = qi for
i = 1, 2, 3, 4.

Now notice that two triangles with angles of 120 degrees and with the same curvatures of the
three sides are congruent. This means that the triangular connected components of E3 and E4 are
congruent with the triangular regions F3 and F4 and in particular they have the same area. This
means that if E3 (respectively E4) has at least one triangular component then it has only that
component and is congruent to F3 (respectively F4). But if we consider the triple point at the end
of one of the two half-lines containing ∂E, the three regions around this triple point are E1, E2

and a component C of E3 or E4. To fix the notation suppose C is a component of E3. Since E1

and E2 are connected, C can have a single arc in common with E1 and a single arc in common
with E2 (see [4, Theorem 6]). It means that C is triangular because it cannot have two consecutive
arcs in common with E4 (and it cannot have only two edges, otherwise the set D̄ considered before
would be disconnected). Then, by the previous claim, C = E3 and it is congruent to F3. But
then the triple point on the other half line must be a triple point adjacent to E4 and hence we
can repeat the same reasoning with E4 in place of E3 to conclude that also E4 is congruent to F4.
This means that E is congruent to F and hence E is standard. □

5. Appendix

We now give a path of statements leading to first regularity results for isoperimetric partitions,
see Theroem 2.4, and for their limits. Their proofs can be obtained with minor modifications from
the corresponding for isoperimetric clusters. For reader convenience we refer to the monograph
[13, Ch. 29, 30], and give only some outline to link the argument with the proofs there exposed.

Theorem 5.1 (volume fixing variations). If F = (F1, . . . , FN ), N ≥ 1, is a partition of an open
connected set B ⊆ Rd, with |Fi ∩B| > 0 for all i = 1, . . . , N , for every suitably choosen family of
interface points, doubly linking each region of the partition with a fixed one with infinite volume,
there exist positive constants ε1, C1, ε2, η, and an open bounded set A ⋐ B (a finite union of open
balls centered in the choosen interface points of E with radius ε1), with the following property:
for every proper partition F′ = (F ′

1, . . . , F
′
N ) of B such that

∑
|(Fi△F ′

i ) ∩A| < ε2 and every
a ∈ V =: {(a1, . . . , aN ) ∈ RN : |ai| < η,

∑
i ai = 0}, there exists a C1 function Φ: V × B → Rd

with Φa : B → B diffeomorphism of class C1, such that

(1) {x ∈ B : Φa(x) ̸= x} ⋐ A;
(2) for all i = 0, . . . , N

|Φa(F
′
i ) ∩A| = |F ′

i ∩A|+ ai;

(3) given any Hd−1-rectifiable set Σ one has∣∣Hd−1(Φa(Σ))−Hd−1(Σ)
∣∣ ≤ C1Hd−1(Σ) ·

N∑
i=0

|ai| ,

so that for every open bounded set Ω ⊆ B containg A one has

|P (Φa(F
′),Ω)− P (F′,Ω)| ≤ C1 · P (F′, A)

N∑
i=0

|ai|

Proof. See [13, Lemma 29.13, Theorem 29.14]. □
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Lemma 5.2. (Almgren’s Lemma) Let E a partition of B an open connected set (|B∩Ej | > 0, for
all j). Then there exist: a finite union of well separated disjoint open balls A, compactly contained
in B, constants C, ε > 0, η > 0 depending on E and B such that: for each △ ⊆ B open bounded
disjoint from A, for each partition E′ such that:

∣∣E′
j ∩B

∣∣ > 0, for all j,
∑∣∣Ej△E′

j ∩A
∣∣ < ε, and

each partition F of B, such that is a variation of E′ compactly contained in △ and
∑

||E′
j ∩△|−

|Fj ∩△|| < η, there exists a partition F′ of B, such that

(1) Fj△F ′
j is compactly contained in A, for all j,

(2) for any bounded open set Ω containing A it holds |F ′
j ∩ Ω| = |E′

j ∩ Ω|, for all j,
(3) for any bounded open set Ω containing A it holds

|P (F′,Ω)− P (F,Ω)| ≤ C · P (E′, A)| ·
∑∣∣|Fj ∩△| −

∣∣E′
j ∩△

∣∣∣∣.
Hence if E′ is an isoperimetric partition for any bounded open set Ω ⊇ A:

P (E′,Ω) ≤ P (F,Ω) + C · P (E′, A) ·
∑∣∣|Fj ∩△| −

∣∣E′
j ∩△

∣∣∣∣
Proof. Is exactly the same proof of Lemma 29.16, Corollary 29.17 in [13]. □

Remark 5.3. Following [13, Corollary 29.17], one choose two unions, A1, A2, with dist(A1, A2) > 0,
of the well separated balls with centers two families of interface points of E, as in Theorem 5.1.

Put η be the minimum among the relative η1, η2. Then if r1 < dist(A1,A2)
2 , ωdr

d
1 < η (depending

only on E), one can choose as △ any B(x, r1), x ∈ Rd, and A one among A1 and A2.

With minor modifications Lemma 30.2 in [13] (Infiltration Lemma) still holds for locally isoper-
imtric partitions:

Lemma 5.4. (Infiltration Lemma) For any partition E of Rd consider A1, A2, ε(E), r1(E) as
in Lemma 5.2 and Remark 5.3, and put O = A1 ∪ A2. Then for d ≥ 2 there is ε0(d) < ωd, and
for any K ≥ 1 there exist 0 < r0(E,K) < min{1, r1}, such that for every locally isoperimetric
partition E′ with

P (E′, O) < K,
∑

|Ej△E′
j ∩O| < ε,

for each x ∈ Rd, r < r0, and for each Λ ⊆ {1, . . . , N}, if∑
j∈Λ

|E′
j ∩B(x, r)| < ε0r

d

then ∑
j∈Λ

∣∣∣E′
j ∩B

(
x,

r

2

)∣∣∣ = 0

Proof. Let x ∈ Rd. Modifing the proof of [13, Lemma 30.2], one applies Lemma 5.2 and Remark 5.3

toE′ with pivotE, finding: A amongA1, A2, C(E), ε(E), η(E), r0(E) < min
{

dist(A1,A2)
2 , 1,

(
η
ω d

) 1
d

}
,

so that, for open bounded Ω ⊇ A, r < r0, and for F partition with Fh△E′
h ⋐ Br(x), it holds good

P (E′,Ω) ≤ P (F,Ω) + C ·K ·
∑∣∣|Fj ∩Br(x)| −

∣∣E′
j ∩Br(x)

∣∣∣∣ .
Hence the proof is the same as reported in [13, Lemma 30.2] to choose the competitor F to

cancel the infiltration; at the end, with the notation there used, to get the decay estimate (30.19)

m(s)1−
1
d ≤ 6m′(s), one observes that suffices decreasing r0 putting r0 < 1

8CK . □

Moreover using universal upper (d − 1)-density estimate of the perimeter of a locally isoperi-
metric N -partition, for example given here in lemma 2.5, one gets the local perimeter bound K
on any isoperimetric partions E′ depending only on d, N , E and O, so that it holds:
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Corollary 5.5. For d ≥ 2 there is ε0(d) < ωd such that if E is a partition that is L1
loc-limit of a

sequence Ek of locally isoperimetric partitions, then there is r0(E) < 1, such that for all x ∈ R,
Λ ⊆ {1, . . . , N}, r < r0, if ∑

j∈Λ

|Ej ∩B(x, r)| ≤ ε0r
d

then

∑
j∈Λ

∣∣∣Ej ∩B
(
x,

r

2

)∣∣∣ = 0

Corollary 5.6. Such a limit partion of locally isoperimetric ones can be considered with open
regions.

This allow to extend the regularity of minimizing clusters to locally isoperimetric partitions
(Theorem 2.4, and Theorem 30.1 in [13]), and get also the following density estimates (same proof
of Lemma 30.6 of [13]):

Lemma 5.7. For d ≥ 2 there exists positive constants c0 ≤ c1 < 1 and c2, such that if E is a
locally isoperimetric partition there exists r0 > 0 such that for every region Ej whenever ρ < r
and x ∈ ∂Ej

(1) c0ωdρ
d ≤ |Ej ∩B(x, ρ)| ≤ c1ωdρ

d

(2) c2ωd−1ρ
d−1 ≤ P (Ej , B(x, ρ)).

Corollary 5.8. If E is a locally isoperimetric partition then each regions with finite measure
is bounded. Hence the component of the chambers with finite volume is bounded and with finite
perimeter.

Proof. Fix F a region of E with finite positive volume and |F | > ε > 0, take a large ball B =
B(0, R) such that 0 < |F \ B| ≤ ε. On other hand if F were unbounded then it would be
that for every B′ ⋑ B concentric ball |F \ B′| > 0. Both |F | < ∞ and |F \ B′| > 0 yield
∂F \ B′ ̸= ∅. So that if r0 is given as in the volume density estimate, and the radius of B′ is
greater than R + r0, for x ∈ ∂F \ B′ one has B(x, ρ) ⊂ Rd \ B for each ρ < r0. Summing up
c0ωdρ

d ≤ |F ∩B(x, ρ)| ≤ |F \B| ≤ ε, so c0ωdr
d ≤ ε that can not hold for every ε > 0.

□

Thanks to the infiltration lemma with pivot partition E, 5.4, 5.5, one has to observe that the
density estimate are rather uniform, so that it holds:

Lemma 5.9. For d ≥ 2 there are positive constants c0 ≤ c1 < 1 and c2, depending only on d, and
for every E N -partition L1

loc limits of locally isoperimetric partitions, there exists 0 < r0(E) < 1
such that whenever ρ < r0 and x ∈ ∂Ej, 1 ≤ j ≤ N
c0ωdρ

d ≤ |Ej ∩B(x, ρ)| ≤ c1ωdρ
d

c2ωd−1ρ
d−1 ≤ P (Ej , B(x, ρ))

Remark 5.10. Notice that if Ek → E, in L1
loc, are locally isoperimetric N -partitions, then with

the same constants, whenever ρ < r0, and k is large enough, for any 1 ≤ j ≤ N and x ∈ ∂Ek
j

c0ωdρ
d ≤ |Ek

j ∩B(x, ρ)| ≤ c1ωdρ
d

c2ωd−1ρ
d−1 ≤ P (Ek

j , B(x, ρ))

Similarly for partitions that are limit of isoperimetric partions we have that the regions with
finite volume are bounded.

Corollary 5.11. If E is a partition that is L1
loc limit of isoperimetric partitions Ek, then its region

with finite volume are bounded.
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