
ON THE SHAPE OF SMALL LIQUID DROPS MINIMIZING
NONLOCAL ENERGIES

KONSTANTINOS BESSAS, MATTEO NOVAGA, AND FUMIHIKO ONOUE

Abstract. We study the equilibrium shape of liquid drops minimizing the fractional
perimeter under the action of a potential energy. We prove, with a quantitative estimate,
that the small volume minimizers are convex and uniformly close to a ball.
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1. Introduction

Given s ∈ (0, 1) and m > 0, we study the following minimization problem:

min
{

Es,g(E) := Ps(E) +
∫

E
g(x) dx : |E| = m

}
, (1.1)

where Ps(E) is the s-fractional perimeter of a measurable set E ⊂ RN defined as

Ps(E) :=
∫

E

∫
Ec

1
|x − y|N+s

dx dy, (1.2)

and
∫

E g(x) dx is the potential energy of E associated with a locally Lipschitz and coercive
function g : RN 7→ R. The notion of s-fractional perimeter was introduced by Caffarelli,
Roquejoffre, and Savin in [4], who were motivated by the classical phase field model when
long-range correlations exist. After their celebrated work, variational problems involving
the s-fractional perimeter have been studied by many authors as an analogy of the classical
ones and our paper is in this line of research.

Date: April 6, 2023.
2020 Mathematics Subject Classification. 49Q20, 53A10, 35R09, 35R11.
Key words and phrases. Fractional perimeter, isoperimetric problem, regularity of minimizers, liquid

drop model.
Acknowledgements. KB and MN are members of INdAM-GNAMPA. The work of KB is partially sup-

ported by the INdAM–GNAMPA 2022 Project Fenomeni non locali in problemi locali, codice CUP_E55-
F22000270001. The work of FO was supported by the DFG Collaborative Research Center TRR 109,
“Discretization in Geometry and Dynamics”.

1



2 K. BESSAS, M. NOVAGA, AND F. ONOUE

Our research is motivated by the classical minimization problem for the equilibrium
shape of liquid drops and crystals. The classical problem can be formulated as follows:

min
{

E(E) :=
∫

∂∗E
f(νE) dHN−1 +

∫
E

g(x) dx : |E| = m
}

, (1.3)

where f : RN → [0, ∞) is a convex, positively 1-homogeneous function, νE is the measure-
theoretic unit normal to E, and ∂∗E is the reduced boundary (see the definition of νE and
∂∗E in [16]). Notice that, if f is the Euclidean norm, then the first term in E is exactly
the classical perimeter of a set E ⊂ RN in the sense of De Giorgi.

Almgren originally proposed the following question on the shape of minimizers for
Problem (1.3). This question is mentioned in [17].
Question: If the potential g is convex, then is it true that the minimizer for Problem

(1.3) is convex (at least connected) and unique?
The geometric properties of minimizers for liquid drop and crystal models associated with
Problem (1.3) have been studied for decades by many authors, for instance, Almgren,
Avron, Baer, De Philippis, Figalli, Finn, Goldman, Gonzalez, Maggi, Massari, McCann,
Tamanini, Taylor, Zia, and so on [11, 13, 1, 12, 10, 2, 7]. Partial answers to Question are
given by some of these authors.

In particular, Figalli and Maggi in [10] extensively studied the shape of minimizers for
Problem (1.3) in the situation where the contribution coming from the potential term
E 7→

∫
E g(x) dx can be negligible compared with the perimeter term associated with f .

They proved that the minimizers of E are uniformly close to a Wulff shape when the
volume is sufficiently small. In addition, if N = 2, they showed that the minimizers are
convex and, if N ≥ 3, assuming a stronger regularity on the 1-homogeneous function f
and the potential g of the energy E , they also proved the convexity of minimizers with a
quantitative estimate for the second fundamental form on the boundaries of minimizers.
We remark that De Philippis and Goldman in [7] proved that, if the function f is smooth
and uniformly elliptic, and the potential g is convex, then any minimizer for Problem
(1.3) without volume constraint is convex in any dimension. Moreover, they showed that,
in dimension 2, any minimizer for Problem (1.3) (with volume constraint in this case) is
convex and unique.

To the best of our knowledge, the shape of minimizers for the nonlocal version of
Problem (1.3), that is, Problem (1.1) is not well-understood and there are few references
on the problem. For instance, Cesaroni and Novaga in [6] proved the existence and
regularity of minimizers for Problem (1.1) in the case that the potential function is either
coercive or ZN -periodic. Our goal in this paper is to study the shape of minimizers for
Problem (1.1) and to establish a nonlocal version of some of the results shown in [10].
Precisely, we prove

Theorem 1.1. Let s ∈ (0, 1). Assume that the potential g satisfies (H1) and (H2) (see
Section 2 for the assumptions). Then, there exist constants m0 = m0(N, s, g) > 0 and
R0 = R0(N, g) > 0 such that, for any m ∈ (0, m0), every minimizer Em of Es,g with
|Em| = m satisfies the following: there exists a point xm ∈ RN such that |xm| ≤ R0,
lim
m→0

dist(xm, {g = 0}) = 0 and

xm + Bσ(m)(1−r0) ⊂ Em ⊂ xm + Bσ(m)(1+r0),
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for some r0 ∈ (0, Cms2/(2N2)) and some constant C > 0 depending only on N , s, and g,
where we set

σ(m) :=
(

m

|B1|

) 1
N

. (1.4)

Moreover, we have that ∂Em is of class C2,α with α < s and ∂Em converges to ∂B1
in C2 as m ↓ 0, by proper scaling and translation. In particular, Em is convex for small
m ∈ (0, m0).

From a geometric point of view, the existence of minimizers for Problem (1.3) is related
to the existence of a smooth hypersurface M on which the following prescribed mean
curvature equation holds:

HM + g = 0 on M, (1.5)
where HM is the mean curvature on M. Indeed, if Em ⊂ RN is a smooth minimizer for
Problem (1.3) with |Em| = m, then we can obtain the following Euler-Lagrange equation:

H∂Em + g = λm on ∂Em.

As a nonlocal analogy of the classical problem, the existence of minimizers of our energy
Es,g is related to the problem of finding a set E with a smooth boundary such that the
following prescribed “fractional” mean curvature equation holds on ∂E:

Hs,∂E(x) + g(x) = 0 for x ∈ ∂E. (1.6)
Here Hs,∂E(x) is the s-fractional mean curvature on ∂E at x, which is defined as

Hs,∂E(x) := P.V.
∫
RN

χEc(y) − χE(y)
|y − x|N+s

dy (1.7)

where “P.V.” means the Cauchy principle value. Indeed, assuming that Em is a minimizer
of Es,g among sets with volume m > 0 and ∂Em is smooth, we can show that the following
Euler-Lagrange equation holds true:

Hs,∂Em + g = λm on ∂Em (1.8)
where λm is a Lagrange multiplier. As we mentioned above, the authors in [6] proved
the existence of bounded minimizers with smooth boundary for Problem (1.1) and this
implies the existence of compact hypersurfaces M ⊂ RN on which the equation (1.8)
holds true for any m > 0. In this context, our main theorem may imply the existence
of a compact, smooth hypersurface Mm ⊂ RN with non-negative mean curvature such
that the equation (1.8) holds on Mm for small m > 0 and Mm, by properly rescaling,
converges to the sphere in RN as m ↓ 0.

The proof of Theorem 1.1 is divided in several steps. The former part of Theorem 1.1
(the uniform closeness of minimizers to the Euclidean ball) will be proved in Section 3
and the latter part of Theorem 1.1 (the regularity and convexity of minimizers) will be
proved in Section 5.

The organization of our paper is as follows: in Section 2 we fix some notation and we
introduce the mathematical setting of our problem.

In Section 3 we first establish properties of minimizers of (2.1) and consider a suitable
rescaling for them. Then, we prove the uniform closeness of the rescaled minimizers to
the unit Euclidean ball for small volumes in Theorem 3.7. The strategy follows some
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arguments in [6, 8, 10]. Precisely, we derive suitable integro-differential inequalities for
estimating the volume of the difference between rescaled minimizers and balls centred in
the origin. A similar argument can be found in [6, Proposition 3.2], where the authors,
applying a nonlocal version of the so-called Almgren’s Lemma (see [10, Lemma 3]), prove
the boundedness of minimizers of (2.1) for a fixed value of the volume. The first main
difference with the approach in [6] is that our estimates not only aim at obtaining bound-
edness of minimizer, but also at closeness in L∞ to the unit ball (for small volumes). The
second one is that our estimates are uniform with respect to the volume of minimizers.
To obtain the uniformity with respect to the volume, we adapt ideas in [10] coming from
the classical case. In particular, we do not employ a nonlocal Almgren’s Lemma such as
[6, Lemma 3.1], but we made use of a suitable dilation. Indeed, with our approach, the
constants involved in our estimates depend only on the volume of the minimizers rather
than on the minimizers themselves.

In Section 4, with the uniform proximity result in our hands, we can reformulate Prob-
lem (2.1) into a variational unconstrained problem, which becomes crucial for establishing
regularity.

In Section 5, we obtain the regularity and convexity of minimizers for Problem (1.1),
employing several results on the regularity of the so-called “almost minimizers” or “Λ-
minimizers”, where Λ is independent of minimizers, of the s-fractional perimeter and the
bootstrap argument for integro-differential equations shown in [3]. As a consequence, by
applying the regularity result for the “Λ-minimizers” shown in [9, Corollary 3.6] and from
the uniform closeness of the minimizers to balls that we prove in Section 3, we obtain
the convergence of the minimizers to the Euclidean ball in C2-topology, which implies in
particular the convexity of minimizers.

2. Notation and Setting of the Problem

We denote the Euclidean norm of x ∈ RN by |x|, the Euclidean ball of radius r > 0
and centre x ∈ RN by Br(x) and the Euclidean ball of volume m > 0 and centre x ∈ RN

by Bm(x). We also set Br := Br(0) and Bm := Bm(0).
If E is a non-empty subsets of RN , then dist (x, E) := inf{|x − y| : y ∈ E} for all

x ∈ RN .
If E, F are two subsets of RN we indicate by E △ F their symmetric difference, i.e

E △ F := (E \ F ) ∪ (F \ E).
We denote the Lebesgue measure of RN by LN and the class of all Lebesgue measurable

sets of RN by MN . For E ∈ MN we also set |E| := LN(E) and we denote the topological
boundary of E ∈ MN by ∂E. HN−1 denotes the (N −1)−dimensional Hausdorff measure
of RN .

Let g : RN → R be
(H1) coercive, i.e. s.t. lim

|x|→+∞
g(x) = +∞;

(H2) locally Lipschitz.
Let Em be a minimizer of the constrained problem (1.1) with volume m, that is

Em ∈ arg min
{

Es,g(E) := Ps(E) +
∫

E
g(x) dx : |E| = m

}
. (2.1)
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Moreover, we recall the definition of (1.4) for every m > 0, so that Bm = Bσ(m) (the
ball of volume m is equal to the ball of radius σ(m)).

Without loss of generality (thanks to the structure of the volume constrained problem
in (2.1)) in the whole work we assume

inf
RN

g = g(0) = 0. (2.2)

Indeed, fixed any x̂ ∈ RN such that g(x̂) = infRN g, by replacing the potential g with
ĝ, defined by ĝ(x) := g(x + x̂) − infRN g, on the one hand we observe that ĝ satisfies (H1),
(H2) and (2.1) on the other one we note that the minimizers of Es,ĝ with volume m are
the same minimizers of Es,g with volume m (upon a translation via x̂).

Remark 2.1. We observe that Em is well-defined, since the problem (1.1) admits solution
if the potential g is measurable, bounded from below and satisfies assumption (H1). This
can be proved via the Direct Method as done in [6, Proposition 5.3].

As far as uniqueness is concerned, to the best of our knowledge, there are no complete
results available in the literature. Even in the classical case (see Problem (1.3)) a general
answer has not been provided yet, even though there are some partial results. Precisely,
from [7, Remark 1.6] it follows that for large volumes, minimizers of (1.3) are unique when
the potential g is convex and coercive.

We also mention that in [17, Theorem 1.1] uniqueness (up to translations) is established
in 2D, for any volume but among convex competitors, when the potential g is convex and
the set where it vanishes is bounded but non-empty.

For every m > 0, we let
Sm :=

{
Ei

m

}
i∈Im

(2.3)
be the family of all the minimizers of Es,g with volume constraint |Ei

m| = m. We observe
that Sm ̸= ∅ because there always exists a minimizer of Es,g for every m > 0. In the
sequel, by a little abuse of notation, we will drop the dependence on i ∈ Im in Ei

m when it
is not essential to highlight it (and also in other quantities possibly depending on i ∈ Im).

3. Uniform Proximity to the Unit Ball

Definition 3.1. Let E ∈ MN , i.e a measurable set of RN , such that 0 < |E| < +∞. We
define the Fraenkel asymmetry of E as

A(E) := inf
{

|E △ B|E|(x)|
|E|

: x ∈ RN

}
,

where B|E|(x) is the ball centred at x with volume |E|. Moreover, if Ps(E) < +∞ we
define the Wulff s-deficit of E as

δs(E) := Ps(E)
Ps(B|E|) − 1,

where B|E| is the ball centred at the origin with volume |E|.

Remark 3.2. We observe that A and δs are scaling and translation invariant, that is:
A(E) = A(λE + x),
δs(E) = δs(λE + x),
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for every λ ∈ R \ {0}, x ∈ RN and E ∈ MN with 0 < |E| < +∞. Furthermore, x̄ attains
the infimum in the definition of A(E) if and only if x + x̄ attains the infimum in the
definition of A(λE + x).

We state the following quantitative isoperimetric inequality for the fractional perimeter
Ps (see also [9]).
Theorem 3.3. Let N ≥ 2 and s ∈ (0, 1). Let E ∈ MN , i.e a measurable set of RN , such
that 0 < |E| < +∞. Then, there exists C(N, s) > 0 s.t.

δs(E) ≥ C(N, s) A(E)2.

We are now ready to establish properties of minimizers of (1.1).
Proposition 3.4 (Properties of Minimizers). Let s ∈ (0, 1) and assume that g satisfies
(H1), (H2) and (2.2). Let Sm := {Ei

m}i∈Im
be as in (2.3) and σ(m) be as in (1.4) for

every m > 0. Then, there exists C(N, s) > 0 s.t. for every m > 0 and i ∈ Im

δs(Ei
m) ≤ C(N, s)σ(m)s sup

Bσ(m)

g, (3.1)

A(Ei
m) = |Ei

m △ Bm(xi
m)|

m
≤ C(N, s)

√
σ(m)s sup

Bσ(m)

g, (3.2)

for some xm = xi
m ∈ RN .

Moreover, there exist m0 = m0(N, s, g) > 0 and R0 = R0(N, g) > 0 such that for every
m ≤ m0 and i ∈ Im

|xi
m| ≤ R0, (3.3)

and
lim
m→0

sup
i∈Im

dist(xi
m, {g = 0}) = 0. (3.4)

Furthermore, if we let
Ẽm := (Em − xm)

σ(m) (3.5)

and
gm(x) := σ(m)sg(σ(m)x + xm), (3.6)

then
Ẽm ∈ arg min

{
Ps(F ) +

∫
F

gm(x) dx : |F | = |B1|
}

(3.7)
for every m > 0.
Proof. This proof follows the strategy adopted in part of [10, Theorem 9] combined with
[6, Proposition 3.2].

Let m > 0 and i ∈ Im. By the non-negativity of g (recall (2.2)) and the minimality of
Ei

m (see (2.3)),

Ps(Ei
m) ≤ Ps(Ei

m) +
∫

Ei
m

g dx ≤ Ps(Bm) +
∫

Bm
g dx. (3.8)

Then,

δs(Ei
m) ≤

∫
Bm g(x) dx

Ps(Bm) =
σ(m)N

∫
B1

g(σ(m)x̃) dx̃

σ(m)N−sPs(B1)
≤ |B1|

Ps(B1)
σ(m)s sup

Bσ(m)

g,
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so that (3.1) is proved. Since by [6, Proposition 3.2] Ei
m is bounded, the infimum in the

definition of A(Ei
m) (see Definition 3.1) is actually a minimum. This observation joint

with Theorem 3.3 and (3.1) implies (3.2) for some xi
m ∈ RN .

Thanks to the local boundedness of g (see (H2)), from (3.2) we can find a constant
m0(N, s, g) > 0 such that

|Ei
m \ Bσ(m)(xi

m)|
m

≤ 1
2 ,

for all m ≤ m0 and i ∈ Im; which (since |Ei
m| = m) is equivalent to

|Ei
m ∩ Bσ(m)(xi

m)| ≥ m

2 , (3.9)

for all m ≤ m0 and i ∈ Im.
Since (H1) holds, we observe that {g = 0} is contained in a compact subset of RN . Then,

(3.4) implies (3.3) for some R0 = R0(N, g) > 0 (possibly choosing m0 = m0(N, s, g) > 0
smaller).

We now claim that (3.4) holds.
We define dm := supi∈Im

dist(xi
m, {g = 0}) for every m ∈ (0, m0] and we consider the

set Im0 := {m ∈ (0, m0] : dm > 2σ(m)}.
We first observe that the fact that σ(m) converges to zero as m → 0 implies,

lim
m→0

m∈(0,m0]\Im0

dm = 0, (3.10)

whenever 0 is an accumulation point for (0, m0] \ Im0 .
If m ∈ Im0 , then Bσ(m)(xi

m) ⊂ RN \({g = 0}+Bdm−2σ(m)) for some i ∈ Im (by definition
of dm and the triangular inequality).

We now observe that by the fractional isoperimetric inequality and (3.8) it immediately
follows ∫

Ei
m

g dx ≤
∫

Bm
g dx. (3.11)

Then, by (3.9), (3.11) and the non-negativity of g (see (2.2)):
m

2 inf
RN \({g=0}+Bdm−2σ(m))

g ≤
∫

Ei
m∩Bσ(m)(xi

m)
g dx ≤

∫
Bm

g dx ≤ m sup
Bσ(m)

g,

for some i ∈ Im.
Therefore, since g is continuous and g(0) = 0 (see (2.2) and (H2)):

lim sup
m→0

m∈Im0

inf
RN \({g=0}+Bdm−2σ(m))

g ≤ 2 lim sup
m→0

sup
Bσ(m)

g = 0, (3.12)

whenever 0 is an accumulation point for Im0 .
From (3.12) and the coercivity of g (see (H1)) and the non-negativity of g (see (2.2))

we then deduce that

lim
m→0

m∈Im0

dm = 0, (3.13)

whenever 0 is an accumulation point for Im0 .
Therefore, (3.4) is proved by combining (3.10) and (3.13).
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Since
Es,g(σ(m)F + xm) = σ(m)N−sEs,gm(F )

for every F ∈ MN with |F | = |B1|, (3.7) follows. □

In order to prove the uniform closeness of the rescaled minimizers Ẽm to the Euclidean
ball for small volumes (see Theorem 3.7), we need two technical lemmas.

Lemma 3.5 (Estimate for the Fractional Derivative). Let a, b ∈ R such that a < b and
s ∈ (0, 1).

(i) Let f : [a, +∞) → [0, +∞) be absolutely continuous and monotone non-increasing
such that lim

r→+∞
f(r) = 0. Then,

−(1 − s)
∫ b

a
dr
∫ +∞

r
dt

f ′(t)
(t − r)s

≤ (b − a)1−sf(a) (3.14)

if the integral in (3.14) is finite.
(ii) Let f : [0, b] → [0, +∞) be absolutely continuous and monotone non-decreasing

such that f(0) = 0. Then,

(1 − s)
∫ b

a
dr
∫ r

0
dt

f ′(t)
(r − t)s

≤ (b − a)1−sf(b) (3.15)

if the integral in (3.15) is finite.

Proof. We prove only (i) since the proof of (ii) is analogous.
By Fubini’s Theorem:

− (1 − s)
∫ b

a
dr
∫ +∞

r
dt

f ′(t)
(t − r)s

=
∫ +∞

a
f ′(t) dt

∫ t∧b

a
dr

d
dr

[
(t − r)1−s

]
=
∫ +∞

a
f ′(t)

[
(t − t ∧ b)1−s − (t − a)1−s

]
dt

=
∫ b

a
(−f ′(t))(t − a)1−s dt +

∫ +∞

b
(−f ′(t))

[
(t − a)1−s − (t − b)1−s

]
dt

≤ (b − a)1−s
∫ +∞

a
(−f ′(t)) = (b − a)1−sf(a)

We also used that the function (b, +∞) ∋ t 7→ (t − a)1−s − (t − b)1−s is non-negative and
monotone non-increasing, so it can be bounded by (b − a)1−s.

□

Lemma 3.6. Let a, b ∈ R such that a < b, s ∈ (0, 1) and c > 0.
(i) Let u : [a, b] → [0, +∞) be monotone non-increasing such that

a + (2u(a)) s
N N

sc
≤ b,

and

2c
∫ b

ϱ
u(r)N−s

N dr ≤ u(ϱ), (3.16)

for every a < ϱ < b.
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Then,

u

(
a + (2u(a)) s

N N

sc

)
= 0 (3.17)

(ii) Let w : [a, b] → [0, +∞) be monotone non-decreasing such that

b − (2w(b)) s
N N

sc
≥ a,

and

2c
∫ ϱ

a
w(r)

N−s
N dr ≤ w(ϱ),

for every a < ϱ < b.
Then,

w

(
b − (2w(b)) s

N N

sc

)
= 0 (3.18)

Proof. The proof follows the argument in [8, Lemma 4.1] with slight adjustments.
We prove (i).
We highlight that in this proof the constant c in (3.16) cannot vary from line to line: it

has to be considered fixed. Now we argue in a similar fashion as in [8, Lemma 4.1]. We
define the auxiliary function h : [a, +∞) → R as

h(ϱ) :=


[
(2u(a)) s

N − c
s

N
(ϱ − a)

]N
s

if a ≤ ϱ ≤ a + (2u(a)) s
N N

sc

0 if ϱ > a + (2u(a)) s
N N

sc

for every ϱ ≥ a. We observe that h is continuous, h(a) = 2u(a) and it satisfies

c
∫ b

ϱ
h(r)

N−s
N dr = h(ϱ), (3.19)

for every ϱ ≥ a. Our goal is now to prove that

u(ϱ) ≤ h(ϱ) ∀ϱ : a ≤ ϱ ≤ a + (2u(a)) s
N N

sc
. (3.20)

We define I := {ϱ ∈ (a, b) : u ≥ h in [ϱ, b]} and we observe that it is an interval and
that

a + (2u(a)) s
N N

sc
∈ I.

Now, we let

R∗ := inf I ∈
[
a, a + (2u(a)) s

N N

sc

]
. (3.21)

Therefore, we can find a sequence {Rn}n∈N ⊆ [a, R∗] converging to R∗, such that h(Rn) ≥
u(Rn) for every n ∈ N. So, combining (3.16) and (3.19), we get

h(Rn) ≥ u(Rn) ≥ 2c
∫ b

Rn

u(r)
N−s

N dr ≥ 2c
∫ R∗

Rn

u(r)
N−s

N dr + 2c
∫ b

R∗
h(r)

N−s
N dr

= 2c
∫ R∗

Rn

u(r)N−s
N dr + 2h(R∗) ≥ 2h(R∗).
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Letting n go to +∞, we obtain h(R∗) ≥ lim
r→R−

∗

u(r) ≥ 2h(R∗), which implies u(R∗) =

h(R∗) = 0. By definition of h and thanks to (3.21), we finally observe that R∗ = a +
(2u(a))

s
N N

sc
. The proof of (i) is complete.

The proof of (ii) is similar to the proof of (i) and thus is left to the reader.
□

Theorem 3.7 (Uniform Closeness of Rescaled Minimizers to B1). Let s ∈ (0, 1) and g s.t.
(H1), (H2) and (2.2) hold. For every m > 0 let Em be a minimizer of Es,g with |Em| = m

and let Ẽm be as in (3.5). There exist m0 = m0(N, s, g) > 0 and C = C(N, s, g) > 0 such
that if 0 < m ≤ m0(N, s, g), then Ẽm satisfies

B1−r0 ⊂ Ẽm ⊂ B1+r0 ,

for some 0 < r0 ≤ C(N, s, g)ms2/(2N2).

Proof. The proof is in the spirit of the one of [10, Theorem 5].
We choose m0 = m0(N, s, g) smaller than the constant m0 in the statement of Propo-

sition 3.4 so that
σ(m0) < 1, (3.22)

and we choose R0 = R0(N, g) and xm as in the statement of Proposition 3.4 (so that
|xm| ≤ R0 whenever m ∈ (0, m0), as in Proposition 3.4).

Then, we fix 0 < m ≤ m0(N, s, g).
For convenience, we put E := Ẽm and we change our focus from the variable m to ε :=√
σ(m)s. Therefore, applying Proposition 3.4, we deduce that there exists ε0(N, s, g) > 0

such that 0 < ε ≤ ε0(N, s, g) and
δs(E) ≤ C(N, s, g)ε2; (3.23)

|E △ B1| ≤ C(N, s, g)ε.

We claim (possibly choosing a smaller ε0(N, s, g) or, equivalently, a smaller m0(N, s, g))
that there exists a constant C(N, s, g) such that

B1−r0 ⊂ E ⊂ B1+r0 ,

for some r0 = r0(ε, N, s, g) ≤ C(N, s, g)εs/N . From (3.23) (in alternative we can simply
use the minimality, testing E against B1) we deduce

Ps(E) ≤ C(N, s, g). (3.24)
STEP 1: proof of the inclusion E ⊂ B1+r0.
For every r > 0 we define the non-negative and monotone non-increasing absolutely

continuous function
u(r) := |E \ Br|.

Thanks to the monotonicity and the hypotheses we observe that for every r ≥ 1
u(r) ≤ u(1) ≤ C(N, s, g)ε. (3.25)

If the set {r > 1 : u(r) > 0} is empty, there is nothing to prove, so we assume it is not.
We let

r1 := sup{r > 1 : u(r) > 0} ∈ (1, +∞]. (3.26)
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Our goal is to prove that
r1 − 1 ≤ C(N, s, g)εs/N . (3.27)

We fix r > 0 such that 1 < r < min{2, r1}. By definition of r1 we have that |E ∩ Br| <
|E|.

We consider the following competitor (with volume equal to |E| = |B1|) for the volume
constrained problem,

F := λ(E ∩ Br),
with

λ = λ(r) :=
(

|E|
|E ∩ Br|

) 1
N

> 1.

After a computation, thanks to (3.25), we observe that λ is arbitrarily close to 1 (upon
choosing ε0(N, s, g) small enough). In particular (upon choosing ε0(N, s, g) small enough)
we get

0 < λ − 1 ≤ C(N)u(r) (3.28)
and, since r < 2,

F ⊆ Bλr ⊆ B3.

At this point we make use of the minimality of E (see (3.7)) to write

Ps(E) +
∫

E
gm(x) dx

≤ Ps(F ) +
∫

F
gm(x) dx = λN−sPs(E ∩ Br) + λN

∫
E∩Br

gm(λx) dx

Now, we recall [8, Lemma 2.1] and making use of the isoperimetric inequality for Ps and
the fact that E = (E \ Br) ⊔ (E ∩ Br) we obtain

C(N, s)(u(r))N−s
N ≤ Ps(E \ Br) = Ps(E) − Ps(E ∩ Br) + 2

∫
E\Br

∫
E∩Br

1
|x − y|N+s

dxdy

≤ (λN−s − 1)Ps(E ∩ Br) (3.29)

+ λN
∫

E∩Br

gm(λx) dx −
∫

E
gm(x) dx (3.30)

+ 2
∫

E\Br

∫
E∩Br

1
|x − y|N+s

dxdy. (3.31)

We first estimate (3.29) using (3.24), (3.25), (3.28) (possibly choosing a smaller ε0(N, s, g))
and the convexity of balls (see [9, Lemma B.1]):

(λN−s − 1)Ps(E ∩ Br) ≤ C(N, s)(λ − 1)Ps(E) ≤ C(N, s, g)u(r).
We then estimate (3.30) using the fact that g is locally Lipschitz (see ((H2))) and non-

negative (see (2.2)) together with (3.25), (3.28), (3.22) and the fact that r < 2 (possibly
choosing a smaller ε0(N, s, g)):

λN
∫

E∩Br

gm(λx) dx −
∫

E
gm(x) dx

= (λN − 1)
∫

E∩Br

gm(λx) dx +
∫

E∩Br

(gm(λx) − gm(x)) dx −
∫

E\Br

gm(x) dx

≤ C(N)(λ − 1)|E ∩ Br| sup
B3+R0

g + (λ − 1)r Lip(g; B3+R0)|E ∩ Br|
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≤ C(N, s, g)u(r).
Now we deal with (3.31). Arguing exactly as in [6, equation (15)], we find

∫
E\Br

∫
E∩Br

1
|x − y|N+s

dxdy ≤ −NωN

s

∫ +∞

r

u′(t)
(t − r)s

dt.

Gathering all the previous inequalities together, we find that for every 1 < r < min{2, r1},

C(N, s)(u(r))N−s
N ≤ C(N, s, g)u(r) − NωN

s

∫ +∞

r

u′(t)
(t − r)s

dt. (3.32)

Now, recalling (3.25), upon choosing ε0(N, s, g) smaller, we can rewrite (3.32) as

C(N, s, g)(u(r))
N−s

N ≤ −NωN

s

∫ +∞

r

u′(t)
(t − r)s

dt. (3.33)

Now we integrate both sides of (3.33) with respect to the variable r and apply Lemma 3.5
part (i) to obtain that for some c = c(N, s, g) > 0

2c
∫ min{2,r1}

ϱ
u(r)

N−s
N dr ≤ u(ϱ), (3.34)

for every 1 < ϱ < min{2, r1}.
Recalling (3.25), upon choosing C(N, s, g) larger and ε0(N, s, g) smaller, we can assume

1 + (2u(1)) s
N N

sc
≤ 1 + C(N, s, g)ε s

N < 2. (3.35)

Without loss of generality we can also assume that

1 + (2u(1)) s
N N

sc
< r1, (3.36)

otherwise (3.35) immediately implies (3.27).
(3.34), (3.35), (3.36) allow us to invoke Lemma 3.6 part (i) to deduce that

u

(
1 + (2u(1)) s

N N

sc

)
= 0. (3.37)

From (3.37), recalling (3.35) and (3.26), we obtain that r1 ≤ 1 + (2u(1))
s
N N

sc
≤ 1 +

C(N, s, g)ε s
N .

STEP 2: proof of the inclusion B1−r0 ⊂ E.
Thanks to the previous step, upon choosing m0 = m0(N, s, g), we can assume

E ⊂ B2. (3.38)
For every r > 0 we define the non-negative and monotone non-decreasing absolutely
continuous function

w(r) := |Br \ E|.
Thanks to the monotonicity and the hypotheses we observe that for every 0 ≤ r ≤ 1

w(r) ≤ w(1) ≤ C(N, s, g)ε. (3.39)
We observe that 0 ∈ {r ∈ [0, 1) : w(r) = 0} and we let

r2 := sup{r ∈ [0, 1) : w(r) = 0} ∈ [0, 1]. (3.40)
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Our goal is to prove that
1 − r2 ≤ C(N, s, g)εs/N . (3.41)

Without loss of generality we suppose that r2 < 1, otherwise (3.41) trivialises itself,
and we fix r > 0 such that r2 < r < 1. By definition of r2 we have that |E ∪ Br| > |E|.

We consider the following competitor (with volume equal to |E| = |B1|) for the volume
constrained problem,

G := µ(E ∪ Br),
with

µ = µ(r) :=
(

|E|
|E ∪ Br|

) 1
N

< 1.

After a computation, thanks to (3.39), we observe that µ is arbitrarily close to 1 (upon
choosing ε0(N, s, g) small enough). In particular (upon choosing ε0(N, s, g) small enough)
we get

0 < 1 − µ ≤ C(N)w(r) (3.42)
and, since r < 1,

F ⊆ Bµr ⊆ B1.

At this point we make use of the minimality of E (see (3.7)) to write

Ps(E) +
∫

E
gm(x) dx

≤ Ps(G) +
∫

G
gm(x) dx = µN−sPs(E ∪ Br) + µN

∫
E∪Br

gm(µx) dx

Now, we recall [8, Lemma 2.1] and making use of the isoperimetric inequality for Ps, the
invariance under complementation of Ps and the fact that Ec = (Br \ E) ⊔ (Br ∪ E)c we
obtain

C(N, s)(w(r))
N−s

N ≤ Ps(Br \ E)

= Ps(Ec) − Ps((E ∪ Br)c) + 2
∫

Br\E

∫
(E∪Br)c

1
|x − y|N+s

dxdy

≤ (µN−s − 1)Ps(E ∪ Br) (3.43)

+ µN
∫

E∪Br

gm(µx) dx −
∫

E
gm(x) dx (3.44)

+ 2
∫

Br\E

∫
(E∪Br)c

1
|x − y|N+s

dxdy. (3.45)

We first observe that (3.43) is negative.
We then estimate (3.44) using the fact that g is locally Lipschitz (see ((H2))) and

non-negative (see (2.2)) together with (3.38), (3.42), (3.22) and the fact that r < 2:

µN
∫

E∪Br

gm(µx) dx −
∫

E
gm(x) dx

= (µN − 1)
∫

E∪Br

gm(µx) dx +
∫

E
(gm(µx) − gm(x)) dx +

∫
Br\E

gm(µx) dx

≤ (1 − µ)2 Lip(g; B2+R0) + w(r) sup
B1+R0

g

≤ C(N, s, g)w(r).
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Now we deal with (3.45). Following th scheme of the proof of [6, equation (15)], we
write

∫
Br\E

∫
(E∪Br)c

1
|x − y|N+s

dxdy ≤
∫

Br\E

∫
Br

c

1
|x − y|N+s

dxdy

≤
∫

Br\E

∫
RN \Br−|y|(y)

1
|x − y|N+s

dxdy ≤
∫

Br\E

∫
RN \Br−|y|

1
|z|N+s

dzdy

≤ NωN

∫
Br\E

∫ +∞

r−|y|

1
ϱ1+s

dϱdy = NωN

s

∫
Br\E

1
(r − |y|)s

dy

= NωN

s

∫ r

0

1
(r − t)s

HN−1(∂Bt \ E) dt

= NωN

s

∫ r

0

w′(t)
(r − t)s

dt.

Gathering all the previous inequalities together, we find that for every r s.t. r2 < r < 1,

C(N, s)(w(r))N−s
N ≤ C(N, s, g)w(r) + NωN

s

∫ r

0

w′(t)
(r − t)s

dt. (3.46)

Now, recalling (3.39), upon choosing ε0(N, s, g) smaller, we can rewrite (3.46) as

C(N, s, g)(w(r))N−s
N ≤ NωN

s

∫ r

0

w′(t)
(r − t)s

dt. (3.47)

Now we integrate both sides of (3.47) with respect to the variable r and apply Lemma 3.5
part (ii) to obtain that for some c = c(N, s, g) > 0

2c
∫ ϱ

r2
w(r)

N−s
N dr ≤ w(ϱ), (3.48)

for every r2 < ϱ < 1.
Recalling (3.39), upon choosing C(N, s, g) larger and ε0(N, s, g) smaller, we can assume

1 − (2w(1)) s
N N

sc
≥ 1 − C(N, s, g)ε s

N > 0. (3.49)

Without loss of generality we can also assume that

1 − (2w(1)) s
N N

sc
> r2, (3.50)

otherwise (3.49) immediately implies (3.41).
(3.48) and (3.50) allow us to invoke Lemma 3.6 part (ii) to deduce that

w

(
1 − (2w(1)) s

N N

sc

)
= 0. (3.51)

From (3.51), recalling (3.49) and (3.40), we obtain that r2 ≥ 1 − (2w(1))
s
N N

sc
≥ 1 −

C(N, s, g)ε s
N . □
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4. Unconstrained Minimization Problem

Now we show that our minimization problem (1.1) is equivalent to the rescaled and
unconstrained problem

min
{

Eµ
s,gm

(E) := Ps(E) +
∫

E
gm(x) dx + µ||E| − |B1|| : E ⊂ RN

}
for µ > 0 sufficiently large. Here we recall that gm is defined by (3.6), that is,

gm(x) := σ(m)s g(σ(m) x + xm)
for x ∈ RN where σ(m) is defined by (1.4) and xm is given in Proposition 3.4.

Proposition 4.1 (Uniform version of Lemma 3.4 in [6]). Let s ∈ (0, 1) and assume that g
satisfies (H1), (H2) and (2.2). For every m > 0 let Em be a minimizer of Es,g with |Em| =
m and let Ẽm be as in (3.5). There exist m0 = m0(N, s, g) > 0 and µ0 = µ0(N, s, g) > 0
such that if 0 < m ≤ m0(N, s, g), then,

Ẽm ⊂ B3/2,

and
Ẽm ∈ arg min

{
Ps(F ) +

∫
F

gm(x) dx + µ||F | − |B1|| : F ⊂ B3

}
, (4.1)

for every µ ≥ µ0, where gm is defined by (3.6).

Proof. We revisit the proof of [6, Lemma 3.4] making use of the extra information given
by Theorem 3.7 and tracking carefully all the constants.

In this proof c = c(N, s, g) > 0, c′ = c′(N, s, g) > 0 are fixed constants defined by,
c = Ps(B1) + (∥g∥L∞(B3+R0 ))2|B3|,

c′ =
[
2c

(N − s)
NωN

+ Lip(g; B6+R0)2 diam(B3)
N

]
(1 + ε1)N + ∥g∥L∞(B3+R0 ),

where R0 = R0(N, s, g) is as in the statement of Proposition 3.4.
Let ε1 = ε1(N, s) ∈ (0, 1/2) be a small constant such that∣∣∣∣∣ λ − 1

λN − 1

∣∣∣∣∣ ≤ 2
N

∣∣∣∣∣λN−s − 1
λN − 1

∣∣∣∣∣ ≤ 2(N − s)
N

(4.2)

for all λ > 0 with |λ − 1| ≤ ε1.
Let ε2 = ε2(N, s) > 0 be a constant such that ε2 < min

{
1 − 1

(1+ε1)N , 1
(1−ε1)N − 1

}
.

Let µ0 = µ0(N, s, g) > 0 be a constant such that µ0 > max
{

c
ε2|B1| , c′

}
.

We fix m0 = m0(N, s, g) ∈ (0, 1) as in the statement of Theorem 3.7 (or smaller) and
m such that 0 < m ≤ m0(N, s, g).

We fix µ ≥ µ0 and we assume by contradiction that ∃Gµ ⊆ B3 of finite s-perimeter
such that

Ps(Gµ) +
∫

Gµ

gm(x) dx + µ

∣∣∣∣|Gµ| − |B1|
∣∣∣∣ < Ps(Ẽm) +

∫
Ẽm

gm(x) dx (4.3)

Then, since Ẽm solves (3.7),

Ps(Gµ) + µ

∣∣∣∣|Gµ| − |B1|
∣∣∣∣ ≤ Ps(Ẽm) +

∫
Ẽm

gm(x) dx −
∫

Gµ

gm(x) dx ≤
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≤ Ps(B1) +
∫

B1
gm(x) dx −

∫
Gµ

gm(x) dx ≤

≤ Ps(B1) + (∥gm∥L∞(B3))|Gµ △ B1| ≤ Ps(B1) + (∥g∥L∞(B3+R0 ))2|B3| = c.

Which, implies

Ps(Gµ) ≤ c ||Gµ| − |B1|| ≤ c

µ
≤ c

µ0
≤ ε2|B1|.

In particular, |B1|
(1+ε1)N ≤ |Gµ| ≤ |B1|

(1−ε1)N . We observe that |Gµ| ≠ |B1|, since Ẽm solves
(3.7) and (4.3) holds.

At this point let G̃µ := λµGµ, with λµ := (|B1|/|Gµ|)1/N . Being the volume of G̃µ equal
to |B1|, by minimality of Ẽm for (3.7), we get:

Ps(Ẽm) +
∫

Ẽm

gm(x) dx ≤ Ps(G̃µ) +
∫

G̃µ

gm(x) dx. (4.4)

The combination between (4.3) and (4.4) leads to:

µ ≤ Ps(G̃µ) − Ps(Gµ)
||Gµ| − |B1||

+
∫

G̃µ
gm(x) dx −

∫
Gµ

gm(x) dx

||Gµ| − |B1||
(4.5)

Applying exactly the same argument in the proof of [6, Lemma 3.4], we obtain:

Ps(G̃µ) − Ps(Gµ)
||Gµ| − |B1||

=
(λN−s

µ − 1)Ps(Gµ)
|λN

µ − 1||Gµ|
, (4.6)

and ∫
G̃µ

gm(x) dx −
∫

Gµ
gm(x) dx

||Gµ| − |B1||

=
∫

G̃µ
gm(x) dx − λN

µ

∫
Gµ

gm(x) dx

||Gµ| − |B1||
+

(λN
µ − 1)

∫
Gµ

gm(x) dx

||Gµ| − |B1||
(4.7)

≤ |B1| Lip(g; B6+R0)|λµ − 1| diam(B3)
|λN

µ − 1||Gµ|
+ ∥g∥L∞(B3+R0 ).

By (4.2), (4.5), (4.6), (4.7) we deduce that

µ ≤ c′ < µ0,

that is the desired contradiction.
□

5. Regularity and Convexity of Minimizers

In this section, our goal is to show the following lemma:

Lemma 5.1. Let s ∈ (0, 1) and assume that g satisfies (H1), (H2) and (2.2). For every
m > 0 let Em be a minimizer of Es,g with |Em| = m and let Ẽm be as in (3.5). Then,
there exists m̃0 > 0, which depends only on N , s and g, such that, for any m ∈ (0, m̃0)
the boundary of Ẽm is of class C2,α for any α ∈ (0, s). Moreover, ∂Ẽm converges to ∂B1
in C2-sense, in particular, Ẽm is convex for any m ∈ (0, m̃0).
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We remark that Lemma 5.1 actually implies that the latter part of Theorem 1.1 is valid.
Therefore, combining Lemma 5.1 with Theorem 3.7, we conclude the proof of our main
theorem, that is, Theorem 1.1.

In order to prove Lemma 5.1, we exploit the regularity results proved by Caputo and
Guillen [5]; Figalli, Fusco, Maggi, Millot, and Morini [9]; Savin and Valdinoci [18]; and
Barrios, Figalli, and Valdinoci [3]. Before recalling the regularity results, we first give
the definition of the so called “almost” minimizers or Λ-minimizers for the s-fractional
perimeter Ps based on the definition given by Figalli, Fusco, Maggi, Millot, and Morini
[9] or Caputo and Guillen [5].

Definition 5.2 ((Λ, δ)-Minimizers or Almost Minimizers of Ps). Let s ∈ (0, 1), Λ > 0
and δ > 0. We say that a measurable set E ⊂ RN is a (Λ, δ)−minimizer of Ps if

Ps(E; Br(x)) ≤ Ps(F ; Br(x)) + Λ|E △ F | (5.1)
for any measurable set F ⊂ RN , x ∈ ∂E, and r ∈ (0, δ) with E △ F ⊂ Br(x).

Note that the similar concept of the almost minimality for Ps, which is more general,
was also given by Caputo and Guillen [5]. See [5] for the details.

Next we recall the regularity result on the almost minimizers or (Λ, δ)-minimizers of Ps

shown by Figalli, Fusco, Maggi, Millot, and Morini [9, Corollary 3.5] (see also [5]). This
result is a nonlocal analogue of the theory of Tamanini on almost minimal surfaces.

Theorem 5.3 (cf. Corollary 3.5 in [9]). If N ≥ 2, Λ > 0, and s0 ∈ (0, 1), then there exist
0 < ε0 < 1, C0 > 0, and α ∈ (0, 1), depending on n, Λ, and s0 only, with the following
property: if E is a (Λ, δ)−minimizer of Ps for s ∈ [s0, 1) in the sense of Definition 5.2
and

0 ∈ ∂E, ∂E ∩ B1(0) ⊂ {y ∈ RN : |y · e| < ε0} (5.2)
for some e ∈ SN−1, then ∂E ∩ B1/2(0) is of class C1,α and the C1,α-norm of its graph
function is bounded by C0.

In other words, Theorem 5.3 with [5, Theorem 1.2] implies that the boundary of an
almost minimizer of Ps is of class C1,α with some α ∈ (0, 1) outside of a closed set of
Hausdorff dimension at most N − 2.

Next we recall the regularity result of fractional minimal cones in R2 by Savin and
Valdinoci [18].

Theorem 5.4 ([18]). Assume that E ⊂ R2 is an s-fractional minimal cone, namely, E
is a minimizer of Ps in any ball and satisfies that E = t E for any t > 0. Then E is a
half-plane.

In particular, by combining the blow-up and blow-down arguments in [4], one may
obtain that s-fractional minimal surfaces in R2 are fully C1,α-regular for any α ∈ (0, s).

Corollary 5.5 ([18]). If E is an s-fractional minimal set in an open set Ω ⊂ R2, then
∂E ∩ Ω′ is a C1,α-curve for any Ω′ ⋐ Ω.

Originally, the regularity of nonlocal (fractional) minimal surfaces, which are defined
by the boundaries of sets minimizing the fractional perimeter, was obtained by Caffarelli,
Roquejoffre, and Savin [4]. Precisely, they proved that every fractional minimal surface
is locally C1,α outside of a closed singular set of Hausdorff dimension at most N − 2.
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Moreover, thanks to Corollary 5.5, it follows that the singular set of fractional minimal
surfaces has Hausdorff dimension at most N − 3.

Now we prove that the rescaled minimizers for our problem are (Λ, δ)−minimizers of
Ps where Λ is independent of the minimizers.

Lemma 5.6 ((Λ, δ)-Minimality or Almost Minimality). Let s ∈ (0, 1) and δ ∈ (0, 1).
Assume that g satisfies (H1), (H2) and (2.2). For every m > 0, let Em be a minimizer of
Es,g with |Em| = m and let Ẽm be as in (3.5). Then there exist m0 = m0(N, s, g) > 0 and
Λ = Λ(N, s, g) such that, for every m ∈ (0, m0), Ẽm is a (Λ, δ)−minimizer of Ps in the
sense of Definition 5.2.

Proof. We fix δ ∈ (0, 1). From Proposition 4.1, we know that Ẽm is also a solution to the
problem (4.1), for some large constant µ > 0 independent of m and Ẽm ⊂ B3/2. Now,
letting F ⊂ RN , x ∈ ∂Ẽm, and r ∈ (0, δ) with Ẽm △ F ⊂ Br(x), from the minimality of
Ẽm, we have that

Eµ
s,gm

(Ẽm) ≤ Eµ
s,gm

(F ), (5.3)
since F ⊂ B3. Hence, from (5.3), we can compute as follows:

Ps(Ẽm) − Ps(F )

= Eµ
s,gm

(Ẽm) −
∫

Ẽm

gm(x) dx − µ
∣∣∣|Ẽm| − |B1|

∣∣∣− Eµ
s,gm

(F ) +
∫

F
gm(x) dx + µ||F | − |B1||

≤
∫
RN

|χ
Ẽm

− χF | gm(x) dx + µ||F | − |Ẽm||

≤
∫

Ẽm△F
gm(x) dx + µ|Ẽm △ F |. (5.4)

Moreover, from the fact that Ẽm ⊂ B3/2 we deduce that Ẽm △ F ⊂ Br(x) ⊂ B3.
Therefore, by Proposition 3.4 and the definition of gm, we have∫

Ẽm△F
gm(x) dx ≤ σ(m)s∥g∥L∞(BR(0)) |Ẽm △ F |, (5.5)

where R > 0 is a constant independent of m. Hence, from (5.4) and (5.5), we obtain

Ps(Ẽm) ≤ Ps(F ) + (σ(m0)s∥g∥L∞(BR(0)) + µ) |Ẽm △ F |

for any F ⊂ RN , x ∈ ∂Ẽm, and r ∈ (0, δ) with Ẽm △ F ⊂ Br(x) where m0 > 0 is as
in Proposition 4.1. This implies that Ẽm is an almost minimizer or (Λ, δ)-minimizer of
Ps in the sense of (5.1) with Λ := σ(m0)s∥g∥L∞(BR(0)) + µ < ∞, which is independent of
minimizers. □

As a consequence of Lemma 5.6 and the aforementioned regularity results for the almost
minimizers of the s-fractional perimeter, we obtain

Lemma 5.7 (C1,α-regularity for Minimizers of Es,gm). Let s ∈ (0, 1) and assume that
g satisfies (H1), (H2) and (2.2). For every m > 0 let Em be a minimizer of Es,g with
|Em| = m and let Ẽm be as in (3.5). There exists m0 = m0(N, s, g) > 0 s.t. if m ∈ (0, m0),
then the boundary of Ẽm is of class C1,α for some α ∈ (0, 1) outside of a closed set of
Hausdorff dimension at most N − 3.
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Proof. The idea is to apply Theorem 5.3 to our problem. To this aim, it is sufficient to
show that every minimizer Ẽm is indeed a (Λ, δ)−minimizer in the sense of (5.1) for some
Λ > 0 depending on N, s and g only, which is guaranteed by Lemma 5.6.

Therefore, from Theorem 5.3 (see also [9, Corollary 3.5]) and the regularity of minimal
cones in [18], we obtain that the boundary of Ẽm is of class C1,α for some α ∈ (0, 1)
outside of a closed set of Hausdorff dimension at most N − 3. □

From the uniform closeness of minimizers to the Euclidean ball stated in Theorem 3.7,
we can immediately obtain the Hausdorff convergence of the minimizers to the unit ball.

Then, with the Hausdorff convergence of the minimizers at our disposal, we can exploit
the regularity criterion (5.2) and the smoothness of the limit set B1 via the argument in
[16, Theorem 26.6] in order to obtain the following result (see also [9, Theorem 3.3 and
Corollary 3.6]).

Lemma 5.8. Let s ∈ (0, 1). Assume that g satisfies (H1), (H2) and (2.2). For any
m > 0, let Em be a minimizer of Es,g with |Em| = m and let Ẽm be as in (3.5). Then, there
exist a constant m0 > 0 and a bounded sequence of functions {φm}m∈(0, m0) ⊂ C1,α(∂B1)
with some α ∈ (0, 1) (independent of m) such that, for any m ∈ (0, m0),

∂Ẽm = {(1 + φm(x)) x : x ∈ ∂B1(0)} and lim
m↓0

∥φm∥C1(∂B1(0)) = 0. (5.6)

Proof. First of all, we recall that, from Theorem 3.7, there exist positive constants m0 =
m0(N, s, g) and C = C(N, s, g) such that, if m ∈ (0, m0), Ẽm satisfies the inclusion

B1−r0(0) ⊂ Ẽm ⊂ B1+r0(0) (5.7)

for some r0 ∈ (0, Cms2/(2N2)). Thus, (5.7) implies that Ẽm converges to B1(0) as m ↓ 0 in
L1-sense and moreover, by definition, ∂Ẽm converges to ∂B1(0) in the Hausdorff distance.

Now, as we observe in Lemma 5.6 and Lemma 5.7, we obtain that Ẽm is also an almost
minimizer of Ps and that ∂Ẽm is of class C1,α with some α ∈ (0, 1) for m ∈ (0, m0)
outside of a closed set of Hausdorff dimension at most N − 3. Although the singular sets
can appear on each ∂Ẽm, by combining the convergence of {∂Ẽm}m∈(0, m0) to ∂B1 in the
Hausdorff distance with the regularity criterion (5.2), we can show that there exists a
constant m′

0 > 0 such that, for each m ∈ (0, m′
0), there exists a function φm ∈ C1,α(∂B1)

such that
∂Ẽm = {(1 + φm(x)) x : x ∈ ∂B1} .

Therefore, the representation of ∂Ẽm in (5.6) holds. We refer to [9, Corollary 3.6] for the
similar argument.

Finally, we show the convergence of the functions {φm}m∈(0, m′
0) in C1 sense as in (5.6) by

using the argument in [16, Theorem 26.6]. Let zm ∈ ∂Ẽm be any point and let R ∈ (0, 1).
By the Hausdorff convergence of {∂Ẽm}m∈(0, m′

0), we can choose a subsequence (denoted
by the same indices) such that zm → z0 ∈ ∂B1(0) as m ↓ 0. We define the cylinder
C(x, R) ⊂ RN centred at x = (x′, xN) ∈ RN−1 × R by

{(y′, yN) ∈ RN−1 × R : |y′ − x′| < R, |yN − xN | < R}.

Then, from the regularity of each ∂Ẽm and ∂B1(0), for each m ∈ (0, m′
0), we can choose

a C1,α-function um : B′
R(z′

0) → R and a smooth function u0 : B′
R(z′

0) → R such that
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Lip(um) ≤ 1 for any m and

C(z0, R) ∩ Ẽm = {(x′, xN) : −R < xN < um(x′)}
C(z0, R) ∩ B1(0) = {(x′, xN) : −R < xN < u0(x′)}

where z0 := (z′
0, z0,N) ∈ RN−1 × R and B′

R(x′) ⊂ RN−1 is the (N − 1)-dimensional ball
of radius R centred at x′ ∈ RN−1. From the regularity criterion (5.2) and the same
argument as in, for instance, [16, Theorem 26.3], we further obtain the Hölder continuity
of the function ∇′um, that is,

|∇′um(y′) − ∇′um(z′)| ≤ C |y′ − z′|α < +∞ (5.8)

for any y′, z′ ∈ B′
R(z′

0) and some constant C > 0 independent of m, where ∇′ is the
gradient in RN−1 and α ∈ (0, 1) is as in Lemma 5.7. Moreover, thanks to the convergence
Ẽm → B1(0) in L1-sense, we have∫

B′
R(z′

0)
|um(z′) − u0(z′)| dz′ = |Ẽm △ E ∩ C(z0, R)| −−→

m↓0
0.

Thus, we obtain ∫
B′

R(z′
0)

ξ(z′) ∇′um(z′) dz′ −−→
m↓0

∫
B′

R(z′
0)

ξ(z′) ∇′u0(z′) dz′ (5.9)

for any ξ ∈ C∞
c (B′

R(z0)). From (5.8), we have that {∇′um}m∈(0, m′
0) is equi-continuous and

bounded in C0(B′
R), and thus, by the Ascoli-Arzelá theorem, we can extract a subsequence

(denoted by the same indices) such that ∇′um → v as m ↓ 0 uniformly in B′
R(z′

0). From
(5.9), the limit v coincides with ∇′u0. Therefore, we obtain that the graph functions
{um}m∈(0, m′

0) of ∂Ẽm converge to the graph function u0 of ∂B1 in C1 sense. From the
choice of φm, this implies that ∥φm∥C1(∂B1) converges to 0. Therefore, we conclude the
proof of (5.6). □

Now we improve the regularity of the boundary of minimizers of Es,gm by employing the
regularity result for solutions to integro-differential equations via the bootstrap argument.
This result was obtained by Barrios, Figalli, and Valdinoci [3, Theorem 1.6]. They proved
the following regularity theorem on the solutions to integro-differential equations. For
simplicity, we do not describe all of the theorem here. See [3, Theorem 1.6] for the full
statement.

Theorem 5.9. Let s ∈ (0, 1), β ∈ (0, 1], and r > 0. Let v ∈ L∞(RN−1) be a solution (in
the viscosity sense) to the integro-differential equation∫

RN−1
Lr(x′, y′) (v(x′ + y′) + v(x′ − y′) − 2v(x′)) dy′ = F (x′, v(x′))

for any x′ ∈ B′
r(0) ⊂ RN−1 where Lr satisfies the following assumptions:

(A1) There exist constants a0, r0 > 0 and η ∈ (0, a0
4 ) such that

(1 − s)(a0 − η)
|y′|N+s

≤ Lr(x′, y′) ≤ (1 − s)(a0 + η)
|y′|N+s

for any x′ ∈ B′
r(0) and y′ ∈ B′

r0(0) \ {0};
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(A2) Lr ∈ C0,β(B′
r(0) × (RN−1 \ {0})) and there exists a constant C0 > 0 such that

∥Lr(·, y′)∥C0,β(B′
r) ≤ C0

|y′|N+s

for any y′ ∈ RN−1 \ {0};
and F ∈ C0,β(B′

r(0) × R). Then, if η is sufficiently small, then v ∈ C1+s+α(B′
r/2(0)) for

any α < β. Moreover, we have the estimate

∥v∥C1+s+α(B′
r/2(0)) ≤ C

(
1 + ∥v∥L∞(RN−1) + ∥F∥L∞(B′

r(0)×R)
)

,

where C > 0 is a constant depending on N , s, C0, and ∥F∥C0,β(B′
r(0)×R).

Taking into account all of the above arguments, we can obtain that the boundary of
minimizers of Es,gm with the volume |B1| has C2,β-regularity for any β ∈ (0, s). Precisely,
we prove

Lemma 5.10 (Improved Regularity of Minimizers). Let s ∈ (0, 1) and m0 > 0 be as in
Lemma 5.8. Assume that g satisfies (H1), (H2) and (2.2). Then, if Em is a minimizer of
Es,g with |Em| = m for any m ∈ (0, m0), ∂Ẽm is of class C2,β for any β ∈ (0, s), where
Ẽm is defined as in (3.5).

Proof. We may assume that 0 ∈ ∂Ẽm by translation. By Lemma 5.8, we can represent
∂Ẽm ∩ (B′

r(0) × (−r, r)) ⊂ RN−1 × R for r > 0 as a graph of a C1,α-function u for some
α ∈ (0, 1) by choosing the proper coordinate. From the fact that Ẽm is a minimizer of
Es,gm with volume constraint and by employing the computation shown in [3], we may
obtain the following Euler-Lagrange equation in the viscosity sense:∫

RN−1
Lr(x′, y′)(u(x′ + y′) + u(x′ − y′) − 2u(x′)) dy′

= G(x′, u(x′)) + λ̃m − gm(x′, u(x′)) for x′ ∈ B′
r′/2(0) ⊂ RN−1

for 0 < r′ < r, where Lr satisfies (A1) and (A2) in Theorem 5.9, spt Lr(x′, ·) ⊂ B′
r′/2(0) for

any x′ ∈ B′
r′/2(0), G is some smooth function (see [3, Section 3] for the precise expression),

and λ̃m is a Lagrange multiplier. Then, since the potential g is locally Lipschitz, we now
apply Theorem 5.9 several times, if necessary, to conclude that the regularity of u can
be improved up to C2,β with β ∈ (0, s). From the compactness of ∂Ẽm and by a simple
covering argument, we obtain the C2,β-regularity of ∂Ẽm for any β ∈ (0, s) with the
following estimate

∥u∥C2,β(B′
r′/4) ≤ C

(
1 + ∥u∥L∞(B′

r) + |λ̃m| + ∥gm∥L∞(B2R0 )
)

,

where C > 0 is a constant depending only on N , s, and ∥g∥C0,1(B2R0 ) and R0 is as in
Proposition 3.4.

□

Finally, we are ready to prove Lemma 5.1, that is, the main lemma in this section.

Proof of Lemma 5.1. Taking into account all the arguments in Proposition 3.4, Theo-
rem 3.7, Lemma 5.8, and Lemma 5.10, we obtain that there exist a constant m0 =
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m0(N, s, g) > 0 and a sequence of functions {φm}m∈(0, m0) ⊂ C2,α(∂B1(0)) for any α ∈
(0, s) such that

∂Ẽm = {(1 + φm(x)) x : x ∈ ∂B1}, ∥φm∥L∞(∂B1) ≤ C1 m
s2

2N2 , lim
m↓0

∥φm∥C1(∂B1) = 0 (5.10)

where C1 > 0 is a constant depending only on N , s, and g. Moreover, from the proof of
Lemma 5.10 and (5.10), we can obtain

∥φm∥C2,α(∂B1) ≤ C2(1 + |λ̃m|) (5.11)
for any m ∈ (0, m0), by choosing m0 > 0 small if necessary, where C2 > 0 is a constant
depending only on N , s, and g and λ̃m is a Lagrange multiplier as in Lemma 5.10.

Now we derive the upper bound of |λ̃m| from the minimality of Ẽm. Since Ẽm is a
minimizer of Es,gm with |Ẽm| = |B1|, by considering the Euler-Lagrange equation with
volume constraint, we have

d

dt

⌊
t=0

(
Ps(Φt(Ẽm)) +

∫
Φt(Ẽm)

gm

)
= λ̃m

d

dt

⌊
t=0

|Φt(Ẽm)| (5.12)

where {Φt}|t|<1 is one-parameter diffeomorphism associated with T ∈ C∞
c (RN ;RN), that

is, Φt(x) := x+tT (x) for any x ∈ RN and |t| < 1. Then, substituting the identity function
Id : x 7→ x with T (by using a suitable cut-off function or by approximation), we obtain,
from (5.12),

N |B1| λ̃m = (N − s)Ps(Ẽm) +
∫

Ẽm

∇gm(x) · x dx + N
∫

Ẽm

gm(x) dx. (5.13)

From Theorem 3.7 and the assumption on g, we obtain∣∣∣∣∫
Ẽm

∇gm(x) · x dx + N
∫

Ẽm

gm(x) dx
∣∣∣∣ ≤ C(N, s, g) m

s
N (5.14)

for any m ∈ (0, m0) where C = C(N, s, g) > 0 is a constant and R0 is given in
Proposition 3.4 depending only on N , s, and g. Then, from (5.13) and (5.14) and by the
minimality of Ẽm, we obtain

|λ̃m| ≤ (N |B1|)−1
(
(N − s)Ps(B1) + C(N, s, g)m s

N

)
(5.15)

for any m ∈ (0, m0). Therefore, from (5.11) and (5.15), we obtain
∥φm∥C2,α(∂B1) ≤ C3(N, s, g) < ∞ (5.16)

for any m ∈ (0, m0) and some constant C3 > 0 independent of m.
Next, because of the continuous embedding C2,α(Ω) ⊂ C2,β(Ω) ⊂ C0(Ω) for any smooth

bounded open set Ω and β < α, we may observe that the following interpolation inequality
is valid (see, for instance, [15, Corollary 1.2.19 and Corollary 1.2.7]): let α ∈ (0, 1). Then,
for any β ∈ (0, α), there exist ϑ(α, β) ∈ (0, 1) and a constant C = C(N, α, β) > 0 such
that

∥u∥C2,β ≤ C ∥u∥ϑ(α,β)
C0 ∥u∥1−ϑ(α,β)

C2,α

for any u ∈ C2,α. From this interpolation inequality, we deduce that, for β ∈ (0, α), there
exist constants ϑ(α, β) ∈ (0, 1) and C̃3(N, α, β) > 0 such that

∥φm∥C2,β(∂B1(0)) ≤ C3(N, α, β)∥φm∥ϑ(α,β)
L∞(∂B1(0)) ∥φm∥1−ϑ(α,β)

C2,α(∂B1(0))
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for m ∈ (0, m0). Therefore, from (5.10) and (5.16), we finally obtain that there exist
constants m̃0 = m̃0(N, s, g) > 0 and C4(N, s, g, α) > 0 such that

∥φm∥C2(∂B1(0)) ≤ C4(N, s, g, α) m
ϑ(α)s2

2N2 (5.17)

for any m ∈ (0, m̃0). This implies that ∂Ẽm is close to ∂B1(0) in C2-sense and, in
particular, Ẽm is convex for sufficiently small m > 0 because the second fundamental
form of ∂Ẽm pointwisely converges to that of ∂B1(0) which is positive definite. □

Remark 5.11. In the proof of Lemma 5.1, we have observed the convexity of minimizers
for small volumes, assuming that g is locally Lipschitz, coercive, and infRN g = g(0) = 0.
In addition, if we further assume that g is convex and radially symmetric, that is, there
exists a convex function G : [0, ∞) → R such that g(x) = G(|x|) for any x ∈ RN , then
we can show that the unique minimizer of Es,gm with volume |B1| for m > 0 is the ball up
to negligible sets.

Indeed, from the isoperimetric inequality of Ps and the symmetric rearrangement (see,
for instance, [14]), we have

Ps(E∗) ≤ Ps(E),
∫

E∗
gm(x) dx ≤

∫
E

gm(x) dx

for any measurable set E ⊂ RN , where we denote by E∗ the open ball of radius equal to
|E|1/N |B1|−1/N centred at the origin.

Corollary 5.12. Under the assumptions of Lemma 5.1, for every m > 0 the following
Euler-Lagrange equation holds:

Hs,∂Em + g = λm on ∂Em, (5.18)
where λm is a Lagrange multiplier associated to the volume constraint such that

lim
m→0

λm = +∞. (5.19)

Proof. By making the same computation as in (5.13), we can show that the identity

Nmλm = (N − s)Ps(Em) +
∫

Em

∇g(x) · x dx + N
∫

Em

g(x) dx (5.20)

holds for m > 0 and that λm → +∞ as m ↓ 0. □

Remark 5.13 (Hs-bubble problem). The classical H-bubble problem, which was orig-
inally raised by S.-T.Yau [19, Problem 59], is formulated as follows: given a function
H : RN → R, the question is to find an immersed hypersurface M ⊂ RN such that its
mean curvature at p ∈ M is equal to H(p). (1.1) is related to a nonlocal version of this
geometric problem. Using the same notation as in Lemma 5.1 and Corollary 5.12, we
observe that if the function (0, +∞) ∋ m 7→ λm were continuous in a neighbourhood of
zero, this would imply that it would be also surjective when restricted to a neighbourhood
of zero (thanks to (5.19)). As a consequence, there would exist λ̄ > 0 such that we would
be able to solve a fractional version of the H-bubble problem, that is: we might find a
hypersurface ∂E satisfying the equation

Hs,∂E + g = λ on ∂E,

for every λ > λ̄.
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Regarding a sufficient condition for the continuity of the Lagrange multiplier λm, we
remark that, if for m0 > 0 sufficiently small a set Em0 with |Em0| = m0 > 0 is the
unique minimizer of Es,g among sets with volume m0, then the Lagrange multiplier λm is
continuous in a neighbourhood of zero( with respect to m > 0).

Indeed, to prove this we first take any sequence {mi}i ⊂ (0, ∞) converging to a fixed
m0 ∈ (0, ∞). We observe, from the minimality of Emi

, that supi Ps(Emi
) < ∞. Then,

from the compactness of Ps, the uniqueness of Em0 , and the coercivity of g, we deduce
that Emi

→ Em0 in L1-sense. Thus, from the minimality of Em0 , the uniform boundedness
of Emi

and by using the dominated convergence theorem, we have∫
Emi

g(x) dx −−−→
i→∞

∫
Em0

g(x) dx. (5.21)

From the minimality of Emi
, we can also obtain the continuity of Ps at m0, that is,

Ps(Emi
) −−−→

i→∞
Ps(Em0).

Indeed, from the minimality of Emi
, setting Fmi

:=
(

mi

m0

)1/N
Em0 , we have

Es,g[mi] := inf{Es,g(E) | |E| = mi}
≤ Es,g(Fmi

)

=
(

mi

m0

)N−s
N

Ps(Em0) + mi

m0

∫
Em0

g

((
mi

m0

) 1
N

x

)
dx

for any i ∈ N. Thus, from the minimality of Em0 , we obtain that
lim sup

i→∞
Es,g[mi] ≤ Es,g[m0].

In the same way, we can also obtain that lim infi→∞ Es,g[mi] ≥ Es,g[m0]. From this, we
derive the continuity of Es,g[m] at m0. Therefore, from the minimality of Emi

and Em0

and from (5.21), we obtain that Ps is continuous at m0.
Finally, from the assumption on g and the uniform boundedness of Emi

, we can also
obtain that the potential term in (5.20) is continuous at m0, that is,∫

Emi

∇g(x) · x dx + N
∫

Emi

g(x) dx −−−→
i→∞

∫
Em0

∇g(x) · x dx + N
∫

Em0

g(x) dx.

In conclusion, from (5.20), we obtain the continuity of λm.
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