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Abstract

Consider two disjoint circles moving by mean curvature plus a forcing term
which makes them touch with zero velocity. It is known that the generalized
solution in the viscosity sense ceases to be a curve after the touching (the so-
called fattening phenomenon). We show that after adding a small stochastic
forcing edW, in the limit ¢ — 0 the measure selects two evolving curves, the
upper and lower barrier in the sense of De Giorgi. Further we show partial
results for nonzero e.

1 Introduction

The evolution of a hypersurface ¥(¢) in R” which flows in time with normal velocity equal
to the mean curvature plus a continous forcing term has attracted a lot of attention since
Brakke defined in [8] a notion of weak solution. Weak solutions are necessary for having
long time existence, because the flow starting from a smooth hypersurface might create
singularities, and the smooth solution might cease to exist. In addition to Brakke’s varifold-
based concept of weak solution which provides existence but no uniqueness, there are other
ways to define the mean curvature flow beyond singularities.

One is the variational approach developed by Almgren, Taylor and Wang [1] and Luckhaus,
Sturzenhecker [19], and its possible generalizations by means of the minimizing movements
of De Giorgi [3].

Another way is to define the evolution of a function u(¢, z) by a degenerate parabolic PDE in
such a way that each level set {z € R" : u(t,z) = a} evolves by mean curvature as long as it
is a smooth hypersurface, see e.g. [10]. Exploiting the maximum principle for this PDE, one
can define a generalized solution, called viscosity solution, which requires only continuity
of u. However, the level sets of the viscosity solution may develop nonempty interior. This
phenomenon is called fattening, and it happens precisely when the solutions of Brakke type
are nonunique, see [14].
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A third approach, the so-called barrier solutions, has been introduced by E. De Giorgi [9]
and developed by G. Bellettini, M. Paolini and M. Novaga [7] [5]. The idea is to consider the
set bounded by the surface instead of the surface itself, and to define a unique upper and
lower evolution for this set, called M*(t) and M, (t) respectively. For a brief summary of this
approach see Paragraph 3.3. Fattening of the viscosity solution corresponds to M*(¢)\ M.(t)
having nonempty interior. In the deterministic case, this approach turns out to be equivalent
to the viscosity level set method.

However, fattening is thought to be a rare phenomenon in the sense that it can only happen
for ”few” initial surfaces. Among the levels of a given function, only a subset of measure
zero can fatten at any given time ¢, but for general initial conditions, the meaning of ”rare”
is less clear.

Now consider probabilistic forcings, i.e the evolution

dp(t, z) - v(t, ) = (k(t, 2) + g(t))dt + edW (2), (1)

where z is a point on a fixed reference manifold, p(¢,z) the corresponding point on the
manifold ¥(¢) at time ¢, k the mean curvature and v the outer normal at this point. W is
the standard Brownian motion and € a small parameter. In this way a probability measure
is introduced and the conjecture that fattening is rare now takes the following form: for any
regular initial surface, fattening happens with zero probability.

Let us remark that defining mean curvature flow with a stochastic forcing has turned out
to be a difficult problem in itself. In [21] Yip considered the case of the noise coming from
a regular random vector field, i.e. white in time but smooth in space. He used a time-
step procedure and showed tightness of the resulting probability measures as well as some
properties of the probability measures which are limit points of the approximating sequence.
Lions and Souganidis [16], [17], [18] give a definition of viscosity solution for fully nonlinear
stochastic PDEs with time dependent noise, and claim uniqueness and continuity in the
initial conditions for a class of equations which covers the motion of a graph by mean
curvature plus a stochastic forcing.

We avoid both approaches and show instead short-time existence for (1) in order to define
upper and lower barriers in the sense of De Giorgi. We consider a particular example: two
disjoint circles in R? moving accordingly to (1), where g is such that they touch with zero
velocity in the deterministic case (i.e. when € = 0). Under this assumption, fattening can
occur in the deterministic case, which was first studied by Bellettini and Paolini [6]. Later
Koo [15] and Gulliver and Koo [13] extended the result to the case of two touching smooth
hypersurfaces of codimension 1, and gave precise upper and lower bounds on the size of the
fat set.

In this paper we show that for any fixed ¢ > 0 a partial nonfattening result holds (see
Lemma 5.2): the fat set (if there exists one) does not contain a ball around the point where
the circles touch, whereas in the deterministic case it contains a ball around the origin, as
it was shown in [13]. Indeed, we expect that with probability 1 there is really nonfattening
in a small time interval (depending on the path) after the touching time.

Moreover, we show that for € — 0 the limits of the upper and lower barrier are the same, more
precisely they converge in the Hausdorff distance with probability 1/2 to the deterministic
upper barrier and with probability 1/2 to the deterministic lower barrier. This means the
stochastic forcing selects in the limit the extremal Brakke solutions (see Theorem 3.8).
The key observation is that once the two circles touch, they have necessarily to cross, because
of elementary properties of Brownian paths. But once they have crossed, the expansion
coming from the mean curvature is for a short time stronger than the Brownian part, so the
inner barrier contains for some time a small ball around the origin.

A result similar to ours, and obtained independently, has been announced by P. Souganidis
and A. Yip.
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2 Notation

In this section we introduce some notation that we shall use in the sequel. Given two sets
A, B CR" we set

AAB := (A\B)U(B\A4),
dist(4,B) := inf -
8 ( ’ ) zeg,lyEB |.’L' y|,
[Hausdorff distance] du(A,B) := sup inf |z —y|+ sup inf |z — y|.
zcAYEB yeBTEA

Given £ C R” and p > 0, we set
E; :={x e R" : dist(z,R" \ E) > p}  Ef :={x € R" : dist(z, E) < p}.

For any R > 0, we let Bg := {z € R" : |z| < R}.

Let (Q,0,P) be a probability space and W : Q@ — C([0,00), w — W(-,w) measurable and
such that W (t) is a standard Brownian motion and W(0) = 0 almost everywhere. o is
assumed to contain sets of zero measure.

For simplicity, we shall often write 8y, O,;, Os;0; (1 < i,j < n) instead of
Given a,b € R we set a A b := min{a, b}, a V b := max{a, b}.

By f(t) = o(t) we mean that lim; o f(¢) = 0.

8 8 &
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3 Setting and main results

3.1 The Existence Theorem

In order to work with the barrier solutions, we need first to show short time existence of the
flow for sufficiently smooth initial surfaces.

Theorem 3.1. (Existence Theorem) Let ¥ C R” be a compact embedded hypersurface of
class C*%, for some 0 < o < 1, and let e > 0. Then there exists a stopping time T (w,X) > 0,
depending on the C**-norm of ¥, and a family of hypersurfaces ¥, (t), t € [0, T(w)), of class
C%2 such that for any Xo € £(0) there ezists a process X (-) with X (t,w) € L, (t) for P-
almost all w which solves the following Ito equation

dX = v(X(t,w),t)k(X(t,w),t)dt + v(X(t,w),t)(edW + g(t)dt),
X(0) = Xo, (2)

where k(t) and v(t) are respectively the mean curvature and the outer normal of X(t) (so
we have to choose a component of R* \ ¥ which is “the outside”), and g € C°([0, +00)) is
a given function.

Moreover, ¥(t) can be approximated by hypersurfaces ¥5(t) which solve (1) with forcing term
equal to g + %W(;, where Wy is a smooth function which converges for almost all w to the
Brownian motion in C= ([0,7]) (e.g. the convolution with a mollifier).

We defer the proof to Section 4.



3.2 Comparison lemmas

In order to apply the barrier method, we need a maximum principle for smooth evolutions.

Lemma 3.2. Let X1(t) and X2(t), t € [0,T], be two smooth solutions respectively of v =
K+ %(t) and v =K + ddif(t), g1,92 € C1([0,T]). Assume also that

£1(0) € 32(0), and  (g1(t) — 91(0)) — (92(t) — 92(0)) = —c(t) VE€[0,T]  (3)

and for some c(t) > 0, ¢ € C°([0,T)).
For any t € [0,T], we define D(t) := dist(Z1(¢),R™ \ X5(¢)). If D(0) > 0 we have

D(t) 2 D(O) - C(t), vt e [05 TA Tc)a (4)

where T, :=inf{t € [0,T] : ¢(t) > D(0)}. In particular, if c =0 then £1(t) C a(t) for any
te[0,T].

Proof. Fix t > 0 such that D(t) > 0 and assume that D(t) = |y; — y2| for some y; € ¥y,
y2 € ¥o. We compute

D(t +6) — D(t)

lim ————————— % =
6—1>rcr)1+ ) (5)
. dw dw: dw dw
min i (1) + () = s () — 20 > 20 - 2 00),
Y1 € X1,y2 € Xo

s.t. D(t) = |y1 - y2|

since ky, (y1) > Kx,(y2) as a consequence of the fact that the function |y — z|, y € X1,
z € ¥, has a minimum for y = y;, 2 = y2. Integrating (5) we get the thesis. O

If we approximate the Brownian motion with smooth functions as in Theorem 3.1, from
Lemma 3.2 we obtain the following result.

Corollary 3.3. Let ¥, (t) and X,,(t), t € [0,T], be two solution of (2) and assume that
W(t,w1) — W(t,ws) > —c(t) for some c(t). Then, if we define the function D(-) as in
Lemma 3.2, the inequality (4) holds.

3.3 Definition of minimal barrier
We recall the definition of barrier and minimal barrier given by De Giorgi in [9].

Definition 3.4. Let w be a path such that the procedure of Section 4 works for every compact
C?% initial surface, i.e. a path which is Hélder-continous. Let ¥,(t), t € [a,b] be as in
theorem 3.1, and let A,(t), t € [a,b] be such that T, (t) = OA,(t). Let F, be the family
of all such regular set-valued functions. We say that for such a path w of the Brownian
motion a function ¢, : [to, +00) = P(R™), to € R, is a barrier with respect to F,, if for any
X(t) € Fu, t € [a,b] CR, X(a) C ¢, (a) implies X(b) C ¢, (b).

In the following we denote by B(F,,to) the class of all barriers with respect to F, starting
at time tq.

Definition 3.5. Let E C R" and ty € R. The minimal barrier M(E,tg,w) : [to, +00) —
P(R™) for the path w starting from E at time to is defined as:

Me(E7t07w)(t) = m {¢w(t) : ¢w € B(fwat(]): ¢w(t0) 2 E}
We also define the upper and lower regularized barrier as

M*,E(Eatoa U M tO; ( ) M:(EatO; ﬂ M tO; ( )

p>0 p>0



It is easy to check, see e.g. [5], that the minimal barrier M(E,t9,w) (as well as the upper
and lower regularized barriers) satisfies a semigroup property in time, i.e.

M(E7t07w)(t) = M(M(E,to,&))(S),S,&)), to S B} S t. (6)

In the following, when it is clear from the context, we drop the explicit dependence of M

(resp. M*, M,) on (to,w).

Proposition 3.6. Let E C R" and let X(t), t € [0,T], be a family of compact hypersurfaces
of class C*%, which evolve accordingly to (1) with € = 0 (i.e. deterministically). Assume
also that £(0) C int(E) and let D = dist(2(0),0FE) > 0. Then, if we let T,, > 0 be the
mazimal time such that (t) C M, (E,w)(t) for t € [0,T,], we have

T, > inf{t € [0,T]: €W (s,w) AO| > D}. (7

Proof. Let F' C E be the open set such that ¥(0) = 0F, and let ¥5 = {z € R" : dist(z, F) =
d}, for 6 > 0. Then, if § is small enough, 35 is an hypersurface of class C?® still contained
in int(E). Let now X;(t), t € [0,7,], be the solution of (2) given by Theorem 3.1 such that
¥5(0) = 5. By definition we have M, (E)(t) D E4(t) for all ¢t € [0, 7,].

Moreover, by Corollary 3.3 we also have dist(X(t), £5(t)) > d —€esupjg 4 |[W(s,w) A0|. There-
fore

dist(X(t), OM. (E)(t)) > D —esup [W(s,w) A0, t € [0, 7]
[0,¢]

Iterating the procedure and considering ¥(7,,) instead of ¥(0) we get the thesis. O
The next result follows immediately from Proposition 3.6, by passing to the complementary.

Corollary 3.7. Let E, X(t), D as in Proposition 3.6 and let F(t) be a family of open sets
such that X.(t) = OF (t). Assume that E C int(F). Then, letting T,, > 0 be the maximal time
such that F(t) 2 M;(E,w)(t), t € [0,T,), inequality (7) holds with supjg 4 |W (s,w) V 0].

3.4 The Limit Theorem

Throughout this paragraph, we will restrict ourselves to the case of curves in R?, i.e. we
consider the case of two disjoint circles. Fix L > ro > 0, € > 0 and let R.(t) be the process
which solves

dR, = (_R% +g(t)) dt +edW(t) te€ (0,T.(w)),  Re(0)=ro, (8)

where [0, T, (w)) is the maximal interval of definition. For € = 0, this is of course a deter-
ministic ODE whose solution and maximal interval of definition do not depend on w.

Let X be the union of two two disjoint circles of radius rq, whose centers are in £y = (—L,0)
and z2 = (+L,0) respectively.

Define the stopping time ¢*(w) := inf{t < T, : R¢(t) > L}. Then for any 0 < ¢ < ¢* we have
%t = Br.t)(#7) U Bp, (s (z7).

Let g be of class C! in a neighbourhood of t* such that for € = 0 the circles touch in such
a way that the second derivative of R(t) is negative for ¢ = ¢5. Let M} (¢) and M, (t) be
the upper and lower regularized barrier for the flow starting from ¥, (see Definition 3.5).
Let also Ty > 0 be the (deterministic) time at which M, ¢ shrinks to two points (M, o are
two circles shrinking after touching, whereas M are two circles joining into a bean-ahaped
figure and finally shrinking to a point).



Further let

St o= {w: #(w) < oo for all €< €}
S; = {w: ti(w) =00 for all € < €}
Moreover we define
st i={lim  [dr(M:(So,w)(t), Mi(So) (1)
+ dnr(Mee(So,0)(t), M5(So) ()] = 0 for all £ € [0,Ty) },
See={lim  [dn(M(Z0,0)(0), Meo(S0)(®)

+ dH(M*,e(Eo,w)(t),M*,O(EO)(t))] —0forallte [O,TO)}.

Now we are able to formulate our main theorem.

Theorem 3.8. (Limit Theorem) We have P(S*) = 1 and P(S.) = 1. As the two sets
are disjoint, this means that almost surely the evolution converges pointwise to one of the
two extremal deterministic solutions and lim, o P(S*AST) =0, lim_,o P(S.AS.) = 0.

The theorem will be the consequence of Lemma 3.9, Proposition 3.10 and Proposition 3.12
below.

First we will approximate S. and ST for € — 0 by sets which do not depend on € and have
probability % by construction.

Lemma 3.9. We have

1

lim P(S.) = lim P(SF) = . (9)

e—0 e—0 2
Proof. We shall prove that there exists a centered Gaussian random variable R;(¢,w) such
that

lim (P(S, AR (t5,w) > 0]) + B(SF AR (t5,0) < 0]) =0,

which gives (9).
The idea is to expand the stochastic ODE for R, in powers of ¢, following Wentzel-Freidlin
[12]. As the equation gets singular for R, — 0, we have to modify it by a smoothed version
near this singularity.
Choose a 0 < Rmin << ro and a smooth function b(R) : R — R, such that b(r) = —1 on
[Rumin, +00), and b(r) = const on (—00, Rmin/2) and replace —1 in (8) by b(r), which gives

dR. = b(R.)dt + gdt + edW,  R.(0) = ro. (10)

Let R, be the solution of (8) and R, the solution of (10), then R, and R, coincide for
t <inf{s: R¢(s) < Rmin}-
Now we expand

R.(t,w) = Ro(t) + €Ri (t,w) + Rac(t,w), (11)

where Rg solves (8) with e = 0, Ry solves the linear stochastic ODE

d
ARy = () |r—ro Ra ()dE + AW, Fa(0) =0, (12)



and Ry is defined as the remainder. Fix T > 0, then by Doob’s L?-inequality

E <sup |R1(s)|2> < 4E|R; (T)|? < C(Ruin, T). (13)
[0,7]

Further from expanding b(R? + eR; + R5,) in the equation (10), and using (12), we get an
equation for Ry ., where the d¥-expressions cancel. From this and Gronwall’s inequality,
we derive

|Ra2,e(t,w)| < C(Tp)e? [sup] |R1(s,w)|2. (14)
0,To

(From (13) and (14) we get E (sup{O,T] |R2,€(t)|) < C(T, Ruin)€?. Note in particular that if
for a fixed w, for some € = €y and for some 0 < a < 1, the right hand side of (14) is smaller
than 5%, then this holds for all € < €.

Next observe that R;(t) is Holder-continous for any 0 < § < 1/2. Fix such a 8 and some
0 < a <1 and define

Alaye) {w: IR, (@) Iz 0,1y > €79,
A(B,€) {w : [|R(@)llcos(om) > €5},

then by the Markov inequality P(A(a,€)) < €172, and, e.g. by the embedding of fractional
Sobolev-spaces in Holder spaces, lim,_,o P(A(S,¢€)) = 0.

Set I(B,¢€) = [t* — e%,t* -+ e%] Now note that due to the nonvanishing of the second
derivative of Ry in t§ we have

inf L — Ry(s >C_1€1_%.
01150 o())

Hence either R.(s) < L on [0,T]\ I(8,€), or we are on A(e) := A(a, ) U A(B, €) for e small
enough.
Further observe that, unless w € A(3,€), we have

sup |Ri(s) — Ru(ty)| < (2675 )Pe & = 205"
s€I(Bse)
So we have for small €
{w:sup R(s) > L} C {w:Ryi(ty) > —€*— 55 U A(e). (15)

[0,7]

So P(S+\ [Ri(t§,w) > 0]) = 0 for any e. (Remember that the ST are increasing in e.)

Now assume R (t§,w) > 0, but w ¢ St. Then there is some € < € such that Ry z(t§) <
—€R; (t§,w), hence w € A(€) U{0 < Ry (t;) < €*}, and the probability of the right hand side
clearly tends to 0 for € — 0. So [Ry (t§,w) > 0] C St U N, where P(N,) — 0.

As St and S are disjoint and P([R; (¢, w) < 0] U [Ry(t§,w) > 0]) = 1, we immediately get
P(SZ \ [R1(t5,w) < 0]) — 0.

If we [Ri(t§,w) < 0]\ S, then there is € < € such that Rg(t) > L for some t. By (15),
w € A(€) U [—o(e) < Ri(t}) < 0], and probability of this set tends to 0.

As R; has symmetric Lebesgue density, the result follows. O

Proposition 3.10. For almost any w € |J oS- and for any § > 0 we have

lim sup dy(Br.)(®:),Broy(z:)) =0 i€ {1,2}. (16)
€0 ¢c(0,75—0]



Proof. We reason as in the proof of Lemma 3.9 and we choose Rpin such that Ro(Tp — ) >
Rpin. Now the claim follows directly from the expansion (11) and the estimates (13) and
(14). O

i From the proof of Lemma 3.9 we get the following result.

Corollary 3.11. For almost any w € |, ST we have lim o t¥ =t3.

In the sequel of the paper, we will prove the following proposition, which together with
Lemma 3.9 and Proposition 3.10, gives Theorem 3.8.

Proposition 3.12. For almost any w € |J,., S+ we have

>0

lim (dp (M (Z0)(t,w), Mg(20) (1)) + drr(Mue(S0) (¢t w), M5(Z0)(1)) = 0. (17)

e—0

Proposition 3.12 means that, on the set of paths where the two circles cross, the upper and
lower barrier have the same limit, which coincides with the deterministic upper barrier (i.e.
two circles merging into a bean-shaped curve). The proof of Proposition 3.12 is postponed
to the end of Section 5.

4 Proof of the Existence Theorem

In order to define a pathwise solution of (2) for such paths that W (¢, w) is Holder-continous,
we reason as in [20, Section 8.5.4 ]. Without loss of generality, we shall assume € = 1
and ¢ = 0 in (2). Indeed, for g € C° the path W (t,w) is Holder-continous if and only if
W(t) :=eW + fg g(s)ds has this property.
In the following we denote by || - || the C?**-norm. Let D D ¥ be a bounded open set with
boundary of class C?* and such that dg € C%%(D), where dy is the signed distance function
from ¥. Reasoning as in [11], [20] we can write the evolution equation (1) in the form

8yd = (2;:1 #) dt +dW = f(d, D?d)dt +dW in D x (0,T)

|Vd|? = 1 on D x (0,T)
d(O) = do in D x {0},

where ); are the eigenvalues of the matrix D?d and

f(u,q) = Tr(q(I —ug)™"),

which is analytic for |u| and |g| small enough.
Now we set u(t, z) := d(t,z) — W(t), then u solves

O = flu+W(t),D*u) in D x (0,T)
[Vu> = 1 ondD x (0,T) (18)
w(0) = do in D x {0}.

As W is Holder-continous, [20, Theorem 5.1.20], [20, Theorem 8.5.4] applies in the same
way as it is used in in [20, Section 8.5.4 ] and gives a local C+®/2:2+_golution. The existence
time of this solution depends on the C?®-norm of dy and on the C®/?-norm of W (¢,w). We
briefly sketch the proof.

We define an operator ' : Y C C'+2/2:2+2([0,6] x D) = Y : T'(%W) := w, where w solves the
following problem



ow = A(w)w + [f@+ W(t),D*u) — A(uo)u] in D x (0,T)
2Vdo-Vv = 1—|Va|>+2Vdy-Va  on 8D x (0,T)
’U(O) = do in D x {0}

Y is chosen as a ball in C*+®/2:2+® of radius R around the initial value ug, and A is the
linearization around wug, i.e. we take the derivatives of f at (0, x,uo, D?ug). The boundary
condition is also derived by linearization.

Using the maximal regularity property of A in C't®/2:2+@ one can show that for § and R
small enough T’ is a contraction on Y. So by the Banach fixed point theorem there is a unique
fixed point u € Y and it clearly solves (18), hence d = u + W is the distance function.
Reasoning as in [20, Chapter 8], one can actually show that both d(¢, z) and u(¢, z) belongs to
C*(D) for any k € N and for any ¢ € (0,T), where T > § is the maximal interval of definition
for a solution (observe that the spatially constant W disappears from the equation, when
considering difference quotients).

In order to prove that the solution is a signed distance function it remains to show that
|Vu| = 1in D. Since u(-,t) € C3+* for any t € (0,T), 8,,u solves on any D' s.t. D' cD

B Opou = y,[f(d, D*d)].
~—~—
=8,,d

Hence w := |Vd|? — 1 solves the same parabolic equation as in the deterministic case and
we conclude as in [20] that [Vu| =|Vd| =1 on D.
Consider now the stochastic ODE in the Ito sense

dX(?) —f(d(t, X (1)), D*d(t, X (1)) Vd(t, X ())dt — Vd(t, X (t))dW,

X(to) = o € Xy,.

As D?d = D?u is Lipschitz in z, this is uniquely solvable for short times.

In order to show that X (s) preserves the zero level of d, have to show that 0 = u(t, X (t)) —
u(ty, zo) + W (t) — W(ty). We can apply the Ito-formula to u, which is of class C! in time.
Thus, using that derivatives of d and u are the same:

t
u(t, X(#)) — ulto,z0) = t d(u(s, X (s)))

| 50uiay (0 X(5)) D5, X ()0, s, X (5) s

¢

+ / [f(d(s, X (s)), D*d(s, X (s)))ds + Vu(s, X (s))d X (s)]
to

Using the fact |Vu| = 1 and the definition of dX, the second integral is exactly —(W (¢) —

W (to)). The fact that [Vu| =1 implies

S D%ult, X (1)) - Vu(t, X(5) = 7 VIVul’ =0,

so the claim is shown.

In order to show convergence of evolutions forced by pathwise smooth approximations Wy of
the noise W, we need an estimate for the difference of two solutions starting from different
but close initial values and (formally) forced by different Holder- continous functions dW;
and dWQ:



Lemma 4.1. Let u;, i = 1,2 be two solutions of (18) with two different integrated forcings
W1 and Wy with W1(0) = W2(0) = 0, and let them start from two different initial values
u1(0), u2(0), which fulfill |Vu;(0)|> = 1 and assume further that Vu; is not tangent to the
boundary.

Then, there are positive constants Cy, Co, T, where C1,Cy depend only on the C*®-norm of
0D and (||u1(0)||c2.« + ||u2(0)||c2.«) and T depends also on |Wi| + |Wa|, such that

[SOUP] llui (2, 2) —u2(t, )| c2.a < Co (||U1(t> 0) —u2(t,0)|lcz.a + W1 —W2|| ¢ ([o,r])) :

Proof. Let v := u; — ug, then v solves

O = 34 ij(t,2)0p,0;v + c(t,x)(v+ W1 —W2) in D x(0,T)

Zﬂi(t, Z)0g,v = 0 on 0D x (0,T)
v(0) = u1(0) — u2(0) in D x {0},
where
tof 2
a;j(t,x) = Do [o(u1 (t, ) + Wi (t), D*uy (¢, 7))
0 9%

+(1 — 0)(u2(t, ) + Wa(t), D*us(t,z))]do

tr) = [ Llotuntte) + W0, 0 0,0)

+(1 = o) (ua(t, ) + Wa(t), D*us(t,2))]do
Bi(t,x) = Opui(t,z) + Op,us(t, ),

since (Vui + Vug)(Vur — Vug) = |[Vuq|? — [Vuz|? =1 -1 = 0. We can find a 7 as in the
statement of the lemma such that on [0, 7] the boundary condition is nontangential and the
CU+a)/214e norm of B; and the C*/%-norms of a;;, ¢ are bounded. Further the initial
value fulfills the boundary condition (compatibility).

The result now follows from [20, Theorem 5.1.22] (optimal regularity for time-dependent
coefficients). O

The following corollary is a straightforward application of the previous lemma to distance
functions, provided the surfaces are so close that we can find a common domain D for the
two distance functions.

Corollary 4.2. Let %o ;,i = 1,2 be two C*-hypersurfaces where %1 evolves as in (1),
whereas for Xy the forcing edW in (1) has been replaced by a smooth forcing ego. Let also
d;(-,t) be the signed distance function from X;(t). Then, there are positive constants C1,
Cy, 7, where C1,Cy depend only on (||d1(0)||cz.« + ||[d2(0)||c2.«) and T depends also on
|eW + [g] + | [(g+ €g2)|, such that if dist(Zo,1,X0,2) < Cy then

c%([o,rh)

sup ||d1 (¢, z) —da(t, 2)||c2.« <Co <||d1 (t,0)—da(t,0)||c2.a +
[0,7]

Wlt)- [l
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Lemma 4.3. Assume a forcing of the type g(t) +edW. If the initial surface Xg is symmetric
under rotation around the m1-azis, then so is X(t). If X(t) is on a open set (t1,tz) x
obtained by rotating the graph of a function h(t,z1) around the x1-axis, then h solves for all
z1 and a.a. w

1+Sh? p_2
dh = (h” 1++2h,2 _n —+ Vit h’2g(t)> dt + V1 + h'?dW, (19)

which corresponds to the Stratonovich equation

" _
oh = (# - "TQ 1+ h'2g(t)> dt + eV/1 + h'20W, (20)

where h' denotes differentiation with respect to ;.

Proof. The first claim follows easily from the fact that the eigenvalues of D2u are invariant
under orthogonal transformations. So the distance function d(t,z) depends only on ¢, 7 =
V23 + ...+ 22 and on ;.

Let G(t,r,z1) := d(t,r(x),x1) — eW (¢), then this is differentiable in time hence for any z1
the Ito-formula can be applied to G (t,%(t, Z1), 1), where the process ﬁ(t, x1) solves for any
fixed x; the following Ito-equation

- G, f(G+W, DG
dh(t,xl):—(€2G3 A a )

€

G—T(t,ﬁ(t, 1), 21)(dW +9),

> (t,ﬁ(t, .731), Qfl)dt—

where u, := d,u. Hence we have dG = —dW. This means d(t, h(t,z),z) = 0 on the time
interval [0, T'] which implies the relations

(Gr,Gay) = VIR (1,1
Kk = GW1+GM+GTH_2

Grr = G:c1w1 (hl)2-

(Here we used that |(Gy,Gz;)?(h(z1),71) = 0 to get a relation between G,;,, G, and

Gy, z,-) All derivatives are taken at (¢, h(t,z1),21). This implies

G, 1, ., /( kK n—2
o =309 (G- "57)

so we get (19). O

5 The case of touching circles

In this Section we set n = 2, and we consider the case when the two evolving circles collide
at a time ¢} < +o0.

As first result, we shall show in Lemma 5.2 that the minimal barrier M, . starting from two
touching circles contains an expanding ball with center in the origin. This means that the
expansive tendency of the large curvature at the origin is stronger than the driving noise,
which is not able to bring the set back to the origin.

11



In order to show that the minimal barrier contains such a ball, it is enough to show that
a sequence of barriers starting from a family of sets {A,},, having smooth boundary and
approximating the two touching circles, contains a ball which does not depend on n.

Let A,, n € N, be a family of compact connected sets (beans) with smooth boundary such
that:

1. A, C Ay, ifn>mg

2. N, An = Ay == Br(z1) U Br(22), dist(Ay, Br(z1) U BL(22)) = ds > 05

3. (z,y) € Ay, iff |y| < én(z), where ¢, is a positive function defined for |z| < a,(0),
smooth for |z| < a,(0) and such that lim;|_q, (o) #n(z) = 0;

4. ¢, is even and has only one local minimum in = 0 (except for |z| = a,(0));

5. the curvature of OA, has a maximum in z = 0, a minimum in |z| = a,(0), and no
other critical point.

For any n € N, let t. = t!(w) be the maximal time of existence of the solution of in the
sense of theorem 3.1 starting from A,. Notice that, by Lemma 4.3, A, (t) is symmetric with
respect to the coordinate axes, and can be written as a subgraph of a function ¢, (¢, ),
|z| < an(t). Denote by A, , and ¢, , the surface and the graph starting from A, but
evolving with a smooth forcing term f, := g + e% W,, where W, € C* and W, -+ W in
C°/2. The functions ¢, , and 0,6, , satisfy

6zz¢n,p N
S N E S (21)
2
8(6z¢n,p) — 6wzam¢n,p _ 6z¢n,ﬁ(azz¢n,p) 6w¢n,p6zz¢n,p fp

1+ (8atnp)® (14 (026n,)?) 1+ (Oxn.p)?

Denote by kp,, = % the curvature of OA,, ,. The function &, , satisfies the
V18 ¢n
equation
6zz""3n,p 8z¢n,p

Opbin,p = Ozbin,pfp + “i,p(”n,p + fo)-

T+ Detnp) | JIF Oang)®)

Applying the Sturmian Theorem [4] to 0,¢, , and to Oyk, , we get that A, ,(t) has only

one neck (i.e. a point where ;¢ , = 0) for z = 0, and the curvature has a global maximum

in z = 0 and global minimum in |z| = an ,(t). As A, ,(t) = Ap(t) in C%@ by corollary 4.2,

the curvature k, of the limit A,, has the same properties.

Since An(t) 2 Bp, () (21) U By ) (22), it follows that £, (0,t) is greater than or equal to the

curvature of the circle which is tangent to both By, ) (z1) and B R.(1) (z2), and whose center

is equidistant from z; and z3 (see Figure 1).

Hence x,(0,t) > 2%, which implies

(2l =)
L% + ¢ (s) — R2(s)

ta
m@mwwwunz/

t1

+ g(s)) ds + e(W(tz) — W(tl)). (22)

After the initial smooth evolution ceases to exist, we construct another evolution starting
from a new curve whose height above the origin is larger or equal to the height of the previous
bean, and which in turn exists until a time ¢2 > t.. In this way we first obtain a (possibly
finite) sequence of sets AX and an increasing sequence of existence times t* (Lemma 5.1),
and later we show that there is a 7 = 7(w) > 0 independent of n, such that #,, := sup, t& > 1
(Lemma 5.2). In the following we let Dg := Br(x1) U Br(z2), for any R > 0.

12



Figure 1: construction of the comparison sets A,

Lemma 5.1. For any n € N and A,, as above, we can construct a sequence of smooth
evolutions Ak (t) for (1), defined on [tF tk+1), such that

n!’n

o A%(t) := An(t) and Dy ) C AR(t) C Mo (Ap, t2)(2), t € [th thTH1).

o Letting 5’“ be the height of AX above the origin, the function (ZH( ) = 5’;( ) for
s € [tk th+1) is upper semicontinous on [t},1,,), it is continuous on (tf,t5+1) and can

jump only above at the times t£ i.e. on(th n) > limype bn(t).
o When R.(tF) > L, the curvature above the origin k(tf,0) of OAE fulfills

o K(tk,0) > 2%, (23)
(Pn(th))? Ad3 (dn(th))

where C(L) is a positive constant depending only on L and d, := dist(Bgr(x1) U
Br(z2),0A,) >0

e The C**-norm (and hence the mazimal existence time) of the evolution starting from
Ak (tk) depends only on the height above the origin ¢, (tX) and on d,.

Remark: As a consequence of these properties, inequality (22) holds for én on [t*,?). Indeed,
between the t* it is the graph of a smooth bean containing the two circles, and at t¥ it can
only jump above.

Proof. For the proof, we will use the fact that dist(Bg, (¢) (#1)UBRg, (1) (%2), R2\ M. (An, t¥)(t))
is nondecreasing in ¢, so in particular it is always greater than d,.

Since Al is already constructed, we proceed inductively, assuming that AX~! has already
been constructed and exists until a time t*. We let ¢f=1(¢F) := = limyp ¢E=1(t) (which always
exists). If g5=1(tk) = 0 or ¢k=1(¢F) = L/2 we stop the construction, if L/2 > ¢k=1(tk) > 0
we proceed as follows. Let us distinguish two cases.

Case 1: R(tF) < L.

13



Define A as the set which contains B r.(tt)(21) UBg, () (z2) and whose boundary is of class
C"! and is contained in (OBp, (x)(21) U8B, (1) (x2) UICT UDC™), where Ct is a circle
%(tk) and center in (0, gF=1(tk) +r)

2ARe—gpn ") " A ’
whereas C~ has same radius and center in (0, —gﬁ_l(tn,k) — 7). (From the monotonicity
properties of the curvature of A¥~1(¢k), which follow from the Sturmian Theorem, it is
easy to check that

as in Figure 1, i.e a circle of radius r :=

A CAETL(tR) C Mo (A, £7)(tF).

We now define A¥ by regularizing A in such a way that the C2®norm of A¥ is bounded
by a constant depending only on d, and 7. This is possible since the distance between
OM.(An, ) and the (four) points where A is not of class C** is greater than d,.

Case 2: R.(tf) > L. Here the problem is to control the curvature of the constructed curve,
because the radius r defined above could be 0. We shall use the fact that two circles of radius
R(tF)+d,, /2 are still contained in M, (A, )(t"), because the distance of OM. (A, t*)(tk)
from Dp_x) is at least d,,. Call h:= \/R.(t§)? — L2

Subcase 1 Assume that 5’;—1(7553) > v/2h. Proceeding as above, we get
by B
AL~ ¢ ' (th))

which gives the first inequality in (23), recalling that ¢% 1 (t¥) < L/2. The second inequality
in (23) is obvious since R.(t}) > L.
Subcase 2 Assume that ¢¥—'(tk) < v/2h. In this case we define the new height as follows

T = <1im ngLl(t)) v ((h + %”) A Zh) )

L1tk

)

If we don’t introduce any discontinuity in the function ¢y, the inequalities (23) follow as
in Subcase 1. Otherwise the inequality ¢*—'(tk) < v/2h gives the second inequality in (23),
whereas the fact that ¢5~1(t£) > h + 9= implies r > d2/(8v/2L), which gives the first

inequality in (23). Notice also that Dg_(%)14,/2 C A C My (An,t*)(tF), and the distance
at the four points where the smoothing takes place is larger than d,,/2. O

The following result states that the curves dA,(t) do not intersect the origin for a time
interval 7 independent of n (even if it depends on the path w).

Lemma 5.2. For any 1/3 < ' < 1/2 and for almost any w, there exist T(w,B') > 0
and c(w) > 0 such that M, (An,t2)(t* + s) contains a ball of radius c(w)s® for all s €

[0,7(w,B"))-
Proof. Fix 7> 0 and choose 1/3 < 8 < ' < 1/2. We set 7; := 7/2%, §; := c1(1)/c} (i € N),
where 0 < ¢1(7) = ¢, (e27)”* for some 0 < p; < 1 and some ¢; > 0 and ¢z = 2°2 for some
0 < p2 < 1. The constants ¢1, p1 and ps can be calculated explicitly at the end of step 4.
The p;, i = 1,2 depend on 3 and j'.
We divide the rest of the proof into five steps.
Step 1. We want to show that, for any i € N, there exists t; = t;(w) € (¢, +€>7;) such that
R.(s) > L on [t;,t; + ((5,’)%627}'] with probability 1 — o(7).
Indeed, let us define t; as follows

t;:= €21 Ainf{s > t* : R.(s) — R.(t?) > i/ €213 }.

14



Step 2.

Step 3.

By applying twice the strong Markov property we get
P(t; < €273, Re > Re(t*) on [tz,tz (5:)7 €27i])
= P(inf {Re(s)|s € [ts,t: + (6} 2] } > Lt
= P (inf { Re(s) — Re(0 )‘se [0, (8 )% 2 } _eb\/en | R,
>P( sup eW(t)< 0651-\/62_7',-)1?’( sup €W (t) > ced; \/;)

[0,(6)F 7] [0,¢27:]

>1-¢ (6,? - exp(—5,~2ﬂ_1)) :

2 ) P(tz < 627',')

) P(t; < €’1;)

for some positive constants ¢, &. We can estimate the probabilities for R, against
those for the e-Brownian motion eW, because on the set {w : infsepss 1r4c2r, ] {Re(8) —
R.(t:)} > £}, which has probability 1 —o(e?7), the absolutely continous part of R.(t)
is uniformly Lipschitz-continous. In particular, on time intervals of length €7, it is
of smaller order than §;v/€27;. The estimate for the Brownian motions follows directly
from the fact that maxpg ¢ W (s) has the distribution of |W (t)|.

We want to show that with probability 1 —o(7) the following holds: ¢n( ) > c(s—t;)P

for s € [ti,t; +5’i €27;) and for some constant ¢ > 0, whenever [t;, t; +5ﬁ €21;) C [t*,Tn)-
Indeed, the A% in lemma 5.1 are constructed in such a way that (23) holds on (¢,%,).
1

Hence we get by (22) for any t; < s <t <t; + 5? 21;

(;n (t) - an (5)

v

t L — ~n
/ (2#(” + g(r)) dr +e(W(t) — W(s)), (24)
s ¢ (r)
¢u(0) > 0.
We have to check that the function 0 .(s) = c(s —t;)° + (W (s) — W (t;)) + fs g(r)dr
is a subsolution of (24) on [t*e, 7 A t) with probability 1 — o(7), i.e.

05,.(r)

Fix 1/2 > o > f' and choose ¢ < (2L)3. We have that |W(t) — W(t)| < es|t —
t;|* with probability 1 — o(cz ') for fixed a (this follows directly from the fact that
E||W (s)|| ro» o,y < C(o,p) for o < 3, the embedding theorems and the Markov
inequality). Hence, (notice that the Brownian terms on both sides of (24) cancel,)

85.0(t) — B5.(s) < / <2m + g(r)) dr + e(W(t) — W(s)).

1

05,0(s)> < c(t —t;)P for t —t; < calc,||g AO|co)ed = (25)
Therefore, using again the Hoélder-continuity of the paths of the Brownian motion,
we have that ¢, (s) > ¢(s — ;)7 for all s € [ti, t; + 6] 5 €27;), whenever this interval is

contained in [t¥,,), and ¢z is so small that (25) holds for the chosen 7, which happens
with probability 1 — o(7). In particular, we have

¢7n (ti + (51-é €2Ti) > cd;(e21;)P.

We know that the second derivative in 0 of ¢, (-, s) is nonnegative for all s € [t¥,t,,) \
Ur{tE}, so for s € [t; +6562Tz,t ) we have

Gn(s) > e[W(s) — W(t; + 5?627'1-)] + ¢b;(€27;)P.
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Hence we have ¢, (s) > £6i(€*1;)P for s € [t;, t; + (%6,»53 (1)) ] N [tr,t,) on a
set Q; with P(;) > 1 — exp(—d; 1).
We can now determine ¢;, p; and p» (and thus §;) in such a way that the following
conditions hold:
. (%5362(2ﬁ_1)T3ﬁ_1) > 2,50 n(s) > £6;(2)8 in [t + 7, (8 + Ti1) A ).
[ ] (51'(62’1'1')5 Z (627'1',1)51.
Now we can argue by iteration to show that ¢, (s) > c¢(s—t*)? for s € (£, (t* +€27) A
t,) on a set of probability of order 1 — o(7).
This implies that for almost any path w there exists 7(w) > 0 such that the thesis
holds for the interval [t?, (¢ + €27) A t,,) instead of [t*,¢F + 7).

Step 4. On the interval [t: + €21, (t* +7) At,) we argue as follows. By the Holder-continuity of
the Brownian motion we know that (L2 — R%(s)) V0 < c3(w)e(s—t5)*+c5(g, L) (s—t7).
However on [e27,7) we have

6(8 - t:)a S CG(E;T)(S - t:)2ﬂ; CG(E,T) = 5p37-a72ﬁ’

Hence we can estimate the denominator in (22) against ¢(r(w))(s—t*)2?" by arguments
as in step 2 for the 7(w) already fixed in the previous step, and we conclude that there
is ¢/(7(w)) such that 84 . is a subsolution for (22) on this interval.

Remark: Actually ¢’ can be chosen independent of 7. This comes from the fact that
we need step 4 only for 7 > € and that we can assume a — 243 close to —1/6.

Step 5. We conclude the proof of the lemma. It remains to show that £, > 7(w). From Step
2 it follows that on [t*,%,) we have ¢, (s) > ¢(w)(s — *)? hence the existence time of
the smooth evolutions A¥ depends only on n as long as t* < 7(w) and ¢, (t¥) < L/2.
Hence %, > 7(w) > 0, provided that ¢,(t) < L/2 for t € [t*,%,) (which is always
satisfied for 7(w) small enough).

O
We are now in the position to prove Proposition 3.12.

Proof. Fix w € J,5o S such that Corollary 3.11 holds. We set for simplicity M?(t) :=
ME(Z0)(t), M e(t) := My (Z0)(t), M§(t) := M§(Zo)(t). We divide the proof into four
steps.

Step 1. Let t < tj. Reasoning exactly as in Proposition 3.10, we get that

lim sup dg (BRe(s) (x'i)aBRo(s) (iEz)) =0 (&S {17 2}a (26)
=0 5¢0,¢]

which implies (17).
Step 2. Let t € (t5,To). We want to prove that

U M@ = M5 (0). (27)

A e<A

Consider the family of sets X,, defined at the beginning of this section. We recall that
for any bounded set A C R? and a family of sets 4,, C R2 such that A4,, | 4, we have

(VM3 (An) = MG(A),
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Step 3.

which implies together with (6)
M) = MGt B, t> 8.

In order to obtain (27), it is enough to prove for any n € N:
() U M) € M§(Za, 15)(2)- (28)
A e<A

Indeed, from the regularity of Mg(X,,t;)(t) (which we get for example from the
gradient estimates in [2]) it follows that

lintl* MG(En, 7)(t) = MG(En, t5)(t) t> 1.
T 0
Therefore, recalling that ¢7 — ¢; for € = 0 by Corollary 3.11, we obtain
U Mi(En, ) (1) = M5 (S, 15) ().
A e<A
Moreover, from Corollary 3.7 we get that for any n € N there exists e(n) such that
ME(t) € Mo(3n, 2)(E)
for all € < €(n), hence

N UM €U M, t)(0),

A e<A A e<A
and (28) follows.
Let ¢ € (t§,To). We want to show that
UM Mae(®) 2 M5(0). (29)
A e<A

Given 0 < r < L, denote by E, be the union of the two tangent circles of radius
r, having centers in the segment [z1,22] and containing the origin. Recall that, by
parabolic rescaling, we get

Ms(t) = U M(E: ) (1), t> 1. (30)

1L

By Lemma 5.2 and recalling (6) there exists do > 0 such that for any § < dg we can
find 75 > 0 independent of € such that

M*,e(t) D B;(0), tZt:-i-T(;.

Since r < L, we can also assume that M, (t* + 75) D E, U B5(0). Applying Proposi-
tion 3.6, it follows that, for € small enough (depending on §), we have

Moc(t) 2 MG(Ep 82+ 15)(8), 2t +715, 7' <1 (31)

Letting € — 0 and using the continuity in the variable s of M§(E,,s)(t) for s < ¢
(which follows from the regularity of OME(E,, s)(t) [2]), inclusion (31) becomes

U N Macl®) D MG(Epr, t +15)(8), > 85 +75, 7' <,

A <A

which gives the result letting § — 07 and recalling (30).
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Step 4. Let us consider the case t = tj. Since M, (t) O Bpg, ()(w1) U Bg, ()(21) for any

€ > 0and t € [0,7c(w)), and since Bg_(¢)(xi) = Bpry)(:), i € {1,2}, uniformly on
compact subsets of [0,Ty), it follows that (29) also with ¢ = ¢5.

We have to prove that also (27) holds. Indeed, assume by contradiction that there
exists a point

ze(rﬂjﬂﬁﬁﬁ>\ﬂﬁ@®- (32)

A e<A

By Step 1, for any s € [0,t) there exists €(s) such that M?*(s) C By (z1) U Bp(z2) for
any € < €(s). Let now r := dist(z, Bp(z1) U Br(22))/2 and let ¥ := 0B,(z). Let also
¥8(t), t € [s,s+7], T > 0, be the evolution starting from ¥ at time s, which solves (1)
letting v be the unit normal pointing inside B,.(z). Since X¢(t) converges, for € — 0,
to the deterministic evolution starting from B,.(z), we can take 7 independent of s
and e. Moreover, it is easy to check from the definition of minimal barrier that

MIt)NZit) =0 tels,s+7] (33)
If we choose s < t§ such that t§ € (s,s + 1), from (33) we get

Z¢(rHJAﬁ@®>\ﬁG@®,

A e<A

which contradicts (32).
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