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Abstract
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1 Introduction

In this paper we consider the anisotropic curvature motion for planar immersed curves.
More precisely, given an initial curve u0 : S1 → R2 and a norm ϕ on R2, which we call
anisotropy, we show existence of a family u(t, x) of curves satisfying the evolution equation

u⊥t = ϕ◦(ν)κϕν, (1)

where u⊥t is the normal component of the velocity ut, ν is the Euclidean normal vector
to the support of u, ϕo is the dual norm of ϕ, and κϕ denotes the anisotropic curvature
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(see Section 2). In particular, we prove a short time existence result which holds for any
anisotropy ϕ, under a natural regularity assumption on the initial datum.

After the seminal paper by Brakke [11], the isotropic mean curvature �ow has been
intensively studied in the past years (see for instance [30, 20, 21, 33] and references therein)
and the long-time behavior of the �ow as well as its singularities are relatively well-
understood.

The �rst occurrence of anisotropic curvature �ow appeared in [3], where the author
shows a short time existence result in two dimensions, for smooth and strictly convex
anisotropies. A few years later, in [4, 34] it was shown that, at the maximal existence time
the evolving curve either looses a self-intersection or shrinks to a point. In particular, if
the initial curve is embedded, then it stays embedded, eventually becomes convex and then
shrinks to homothetically a point (see [24, 16]).

In the crystalline case, that is, when the anisotropy ϕ is piecewise linear, equation (1)
reduces to a system of ODE's and existence and uniqueness of solutions was proved in
[27]. Shortly after, in [35], Stancu proved that a convex curve remains convex and shrinks
homothetically to a point, while its shape approaches the boundary of the unit ball of ϕ,
and in [25] the authors showed that an embedded initial curve becomes eventually convex
and then shrinks to a point by the result in [35].

On the other hand few results are available for general anisotropies. In the embedded
case, an existence result analogous to the one in [3] was established in [15], by means of
a implicit variational scheme introduced in [2] in order to de�ne a global weak solution to
the anisotropic mean curvature �ow. The consistency of such solution with the solution
constructed in [27] was shown in [1]. An important notion in [15] is that of ϕ-regular �ow
(see [8, 7] and De�nition 7 below), which extends the notion of smooth evolution to general
anisotropies. For such �ows a uniqueness result was established in [7] (see also [14, 28]).

Let us mention that very recently an existence and uniqueness result of global weak
solutions to the anisotropic mean curvature �ow in the embedded case, which holds in any
dimensions and for general anisotropies, has been proved in [12] (see also [26, 29] for a
similar result in the crystalline case, in two and three dimensions).

The main purpose of this paper is to extend the existence result in [15] to immersed
curves. In order to do this, we regularize both the anisotropy and the initial curve, so that
we can apply the result in [3] and obtain a smooth solution for short time. Then, we show
that we can pass to the limit in the regularization parameter, to obtain an existence result
in the general case. We point out that, since the result in [7] only applies to embedded
solutions, at the moment we do not have a general uniqueness result.

The plan of the paper is the following: in Section 2, we introduce the notation which
we use in the paper and de�ne the anisotropic curvature �ow for immersed curves. In
Section 3, we show that a curve with bounded ϕ-curvature can be approximated by curves
with bounded ϕε-curvature, where ϕε's are smooth anisotropies converging to ϕ as ε→ 0.
In Section 4.1, we study the evolution of relevant geometric quantities under the �ow, and
prove that the curvature must blow up at the �rst singular time, as it happens in the
isotropic case. This provides a uniform bound of the existence time of the approximate
�ows. Finally, in Section 4.2 we pass to the limit in the approximate �ows and obtain a
solution to the original anisotropic curvature motion in an interval [0, T ) where T depends
only on the initial data.
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2 Notation and preliminary de�nitions

We consider closed planar curves parametrized by u : S1 × [0, T ] → R2, where S1 is
identi�ed in the obvious way with [0, 2π]. We denote by s the arc-length parameter of the
curve (thus ∂s(·) = ∂x(·)/|ux|), by τ = ux/|ux| = us = (sin θ,− cos θ) its unit tangent and
ν = (cos θ, sin θ) its unit normal. The Euclidean scalar product in R2 is denoted by ·. The
symbol ⊥ stays for anti-clockwise rotation by π/2, therefore (a, b)⊥ = (−b, a). Recall the
classical Frenet formulas

uss = τs = ~κ = κν, νs = −κτ. (2)

Moreover recall that from the expression for νs one infers that for the scalar curvature κ
we have

κ = θs. (3)

2.1 Anisotropies

De�nition 1. We call anisotropy a norm ϕ : R2 → [0,∞). We say that ϕ is smooth if
ϕ ∈ C2(R2 \ {0}) and ϕ is elliptic if ϕ2 is strongly convex, that is, there exists C > 0 such
that

D2(ϕ2) > C Id (4)

in the distributional sense.

De�nition 2. The set Wϕ := {ϕ 6 1} is called Wul� shape. We say that ϕ is crystalline
if Wϕ is a polygon.

De�nition 3. Given an anisotropy ϕ, we introduce the polar norm ϕ◦ relative to ϕ

ϕ◦(x) = sup{ξ · x |ϕ(ξ) 6 1}.

Remark 1. Note that ϕ is smooth and elliptic if and only if ϕ◦ is smooth and elliptic
([15, � 2]).

The ellipticity condition implies that the Wul� shape is uniformly convex. Moreover,
from (4) we infer that

D2ϕ(ν)τ · τ ≥ C̃, C̃ :=
C

2 max{ϕ(ν̃) | ν̃ ∈ S1}
, (5)

for unit vectors ν and τ with ν · τ = 0. Indeed, condition (4) implies that

2ϕ(ν)D2ϕ(ν)ξ · ξ + 2(Dϕ(ν) · ξ)2 ≥ C|ξ|2

for any ξ ∈ R2. Given τ̃ , |τ̃ | = 1 with Dϕ(ν) · τ̃ = 0, then we can write τ̃ = ατ + βν
for some α, β ∈ [−1, 1], α 6= 0. Then, using the homogeneity properties of ϕ (namely
Dϕ(ξ) · ξ = ϕ(ξ), D2ϕ(ξ)ξ = 0 for ξ ∈ R2, ξ 6= 0), we get

C 6 2ϕ(ν)D2ϕ(ν)τ̃ · τ̃ = 2ϕ(ν)α2D2ϕ(ν)τ · τ 6 2ϕ(ν)D2ϕ(ν)τ · τ,

from which (5) follows. Inequality (5) will be used in Section 4.1.
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2.2 ϕ-regular curves and the RWϕ-condition

Following [15, � 2] we give the following de�nition.

De�nition 4. Let R>0. We say that a set E ⊂ R2 with non-empty interior satis�es the
inner (resp. outer) RWϕ-condition if for any x ∈ ∂E, there exists y ∈ R2 such that

RWϕ + y ⊆ E (resp. RWϕ + y ⊆ Ec), and x ∈ ∂(RWϕ + y).

We also ask that for every r < R and x ∈ R2, the set (x+rWϕ)∩Ec (resp. (x+rWϕ)∩E)
is connected. We say that a set E satis�es the RWϕ-condition if it satis�es both the inner
and the outer RWϕ-condition.

Remark 2. As observed in [15, Remark 1] (and using the connectedness assumption),
if E satis�es the RWϕ-condition for some R > 0, then ∂E is locally a Lipschitz graph.
In particular a pathological set as depicted in [15, Fig. 1] cannot occur. Moreover if in
addition ϕ◦ and ϕ are smooth, then ∂E is of class C1,1 and |κϕ| 6 1/R a.e. on ∂E.

Since we will be working with immersed curves we need a localized version of the
RWϕ-condition.

De�nition 5. Let u be a closed curve which is locally a Lipschitz graph, that is, for any
x ∈ S1 the image of u coincides with the graph of a function fx in a neighborhood of u(x).
We say that u satis�es locally the inner (reps. outer) RWϕ-condition if for any x ∈ S1,
there exist y ∈ R2 and ρ > 0 such that u(x) ∈ ∂(RWϕ + y) and

(RWϕ + y) ∩Bρ(u(x)) ⊆ S− (resp. (RWϕ + y) ∩Bρ(u(x)) ⊆ S+),

where S− and S+ denote respectively the subgraph and the supergraph of the function fx.
We say that u satis�es locally the RWϕ-condition if it locally satis�es both the inner and
the outer RWϕ-condition.

Note that the above de�nition is weaker than De�nition 4, in the sense that in the
crystalline case information about the curvature gets lost. For instance if Wϕ = {x ∈
R2, ‖x‖L∞ 6 1} is a unit square, then the set E = 1

2Wϕ satis�es locally the RWϕ-condition
for any positive R. This �inconsistency� is due to the fact that in the crystalline case the
de�nition of curvature (see De�nition 6 below) is no longer a local concept. To retain
information about the curvature, the geometrical arguments used in Section 3 will use
additional knowledge on the length of the �at sides.

As initial data for the anisotropic curve shortening �ow we will consider immersed
curves that admit a su�ciently regular anisotropic normal vector �eld (and hence locally
satis�es a RWϕ-condition, by Lemma 1 below). More precisely, we give the following
de�nition.

De�nition 6. Let u be a closed curve in R2 and let s ∈ [0, L] denote its arc-length param-
eter. We say that u is ϕ-regular if the image of u is locally a Lipschitz graph, and there
exists a Lipschitz vector �eld n : [0, L]→ R2, usually called Cahn-Ho�man vector �eld (see
[36]), such that

n(s) ∈ ∂ϕ◦(ν(s)) a.e. in [0, L],
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where ∂ϕ◦ denotes the sub-di�erential of the anisotropy ϕ◦. We de�ne the (scalar) anisotropic
curvature of u by

κϕ := −Ns · τ,

where N is the Cahn-Ho�man vector �eld that minimizes the energy

K(n) =

∫ L

0
(ns · τ)2ϕ◦(ν)ds.

Notice that since a ϕ-regular curve is locally a Lipschitz graph its anisotropic curvature
κϕ is well-de�ned almost everywhere in s. On the other hand di�erent choices of Cahn-
Ho�man vector �elds are in general possible. In the following we will always write N when
referring to the particular choice of Cahn-Ho�man vector �eld that realizes the minimum
for the functional K. Finally recall that κϕ = −Ns · τ = −divN and that the Euclidean
tangential divergence coincide with the divergence of an extension for N ([9, Lemma 4.5]).

Remark 3. If u is smooth and ϕ is smooth and elliptic, then κϕ = (D2ϕ◦(ν)τ · τ)κ and
the anisotropic curvature is controlled (from above and below) by the classical curvature
κ, thanks to (5).

If u is piecewise linear and ϕ is crystalline, then κϕ is no longer a local quantity. Indeed
the curvature of an edge F ⊂ u(S1) of length l, parallel to an edge of the Wul� shape, is
given by the expression

κFϕ = δF
lWϕ

l

where lWϕ is the length of the corresponding edge of the Wul� shape, and δF ∈ {0,±1} is
a local convexity factor. In particular, if 0 < |κϕ| 6 C then l ≥ lWϕ/C, that is, l must be
long at least as the corresponding edge of the rescaled Wul�-shape 1

CWϕ.

Below we will use the following facts.

Lemma 1. Let u be a ϕ-regular curve and let

F (s, d) := u(s) + dn(s), n(s, d) := n(s) s ∈ [0, L].

Then, the curve F (·, d) is ϕ-regular with Cahn-Ho�man vector �eld n(·, d) for all |d| <
‖ns‖∞. Moreover u satis�es locally the RWϕ-condition with R = 1

‖ns‖∞ .

For the particular choice of n(s) = N(s) we have in addition that n(s, d) = N(s, d) and
‖Ns‖∞ = ‖κϕ‖∞.

Proof. First of all notice that ns is a tangential vector and therefore ns = (ns · τ)τ (in
particular for the Cahn-Ho�man vector �eld N we infer that Ns = (Ns · τ)τ = −κϕτ
and hence ‖Ns‖∞ = ‖κϕ‖∞). The fact that ns is always parallel to τ is a consequence of
ϕ2(n) = 1. Indeed, this implies that ∂s(ϕ

2(n(s))) = 0. Note that thanks to [17, Th. 2.3.10],
if ∂sn 6= 0, then ∂s(ϕ

2(n(s))) = ∂(ϕ2)(n(s)) · ∂sn(s), where ∂ denotes the subdi�erential.
Recalling that

ν(s)

ϕ◦(ν(s))
∈ 1

2
∂(ϕ2)(n(s)),
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we then get
ν · ∂sn = 0,

this equality holding also when ∂sn = 0.
The thesis now follows by the argument in [9, Lemma 3.3 and Lemma 3.4]. Indeed, we

�rst prove that F is locally bi-Lipschitz from [0, L] × (−1/C, 1/C) onto its image in R2,
where C = ‖ns‖∞. To this aim, we follow [9, Lemma 3.3] and apply the inverse function
theorem in a Lipschitz framework (cf. [17, Th. 7.1.1]). We have to show that, if F is
di�erentiable at (sn, dn), (sn, dn) → (s, d), and there is a limit of DF (sn, dn), then the
limit is nonsingular. To see this, we compute

DF (sn, dn) = (τ(sn) + dn∂sn(sn), n(sn)) = ([1 + dn(ns(sn) · τ(sn))]τ(sn), n(sn)) .

Therefore

| detDF (sn, dn)| = |1+dn(ns(sn)·τ(sn))||n(sn)·τ⊥(sn)| = ϕ◦(ν(sn))|1+dn(ns(sn)·τ(sn))|.

This shows that as long as |d| is smaller than 1/C, the determinant cannot degenerate.
Moreover, since n(sn) → n(s), we have that convex combinations of the above limits are
still matrices with full rank; hence the implicit function theorem applies. It follows that F
is locally bi-Lipschitz and F (·, d) is ϕ-regular for every |d| < 1/C.

Notice also that ϕ(F (s, d) − u(s)) = d. To conclude that u satis�es locally the RWϕ-
condition with R = 1/C, it is enough to observe that ϕ(F (s, t) − u(s′)) ≥ d for s′ in
a neighborhood of s. This is proven [9, Lemma 3.4] under the assumption that u is an
embedding, but it also applies to our case as we can replace u with a curve û such that û
is a ϕ-regular embedding that coincides with u in a neighborhood of s, with ‖n̂s‖∞ 6 C.

Finally observe that if n(s) = N(s) then N(·, d) is by construction the Cahn-Ho�man
vector �eld that minimizes K as in De�nition 6. (In principle this must be only veri�ed on
�at segments of u where the curvature is not zero: here N(·) linearly interpolates between
the values of N at the end of the segment (as discussed for instance [5, Ex. 7.1]) and the
same holds for N(·, d) by de�nition.)

Remark 4. Notice that, letting (s(x), d(x)) be a local inverse of F in a neighborhood U
of u(s̄), and letting ñ(x) = n(s(x)), for x ∈ U there holds

ñ(x) ∈ ∂ϕ◦(∇d(x)), div ñ(x) = div n(s(x)) +O(d(x)). (6)

Notice that d is a local ϕ-distance function and s is a local projection function on the
support of the curve u in the neighborhood U , thus ∇d(x) = ν(s(x))

ϕ◦(ν(s(x))) and ϕ
◦(∇d(x)) = 1.

In the case of smooth and elliptic anisotropies a stronger statement holds.

Lemma 2. Let u be a closed curve which is locally a Lipschitz graph. Let ϕ (and ϕ◦) be
smooth and elliptic. The curve u is ϕ-regular if and only if it locally satis�es the RWϕ-
condition for some R > 0. Moreover we have R = 1

‖Ns‖∞ .

Proof. One part of the statement follows from Lemma 1. On the other hand, suppose now
that u satis�es locally the RWϕ-condition. Then (thanks to the regularity and ellipticity
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of ϕ), the curve is C1,1 which means that the Euclidian normal vector ν is Lipschitz with
respect to the arc-length s. Then, since ϕ◦ is regular, the vector �eld

N := Dϕ◦(ν)

is also Lipschitz with respect to s and is therefore the Cahn-Ho�man vector �eld.

2.3 ϕ-regular �ows

De�nition 7. We say that a family of curves u : S1 × [0, T ]→ R2 is a ϕ-regular �ow if

• u is Lipschitz continuous,

• u(·, t) is ϕ-regular for every t ∈ [0, T ], and there exists a family of Cahn-Ho�man
vector �elds n(·, t) for u(·, t) such that ‖ns(·, t)‖∞ ≤ C for every t ∈ [0, T ],

• for almost every (x, t) there holds

ut · ν = −(div n)n · ν . (7)

It is easy to check that the Wul� shape shrinks self-similarly under (7) (see [24, 35]).

Remark 5. Given a ϕ-regular �ow u we can de�ne the functions F (s, d, t), n(s, d, t), as
in Lemma 1. We let (s(x, t), d(x, t)) be the inverse of F in a (space-time) neighborhood V
of u(s̄, t̄), and we let ñ(x, t) = n(s(x, t), t) ∈ ∂ϕ◦(∇d). By (6) for (x, t) ∈ V we get

div ñ(x, t) = div n(s(x, t), t) +O(d(x, t)) ,

moreover, using the equality x = u(s(x, t), t) + d(x, t)n(s(x, t), t) and assuming that the
curve u(S1, t) moves in direction n, one can show

dt(x, t) = −ut(s(x, t), t) ·
ν(s(x, t), t)

ϕ◦(ν(s(x, t), t))
.

As a consequence, in analogy to [15, De�nition 2]), (7) is equivalent to

dt = div ñ+O(d) a.e. in V. (8)

When u is smooth and the anisotropy ϕ is smooth and elliptic, the classical formulation
of the anisotropic curvature �ow (see [3]) is given by the equation

ut = ϕ◦(ν)κϕν. (9)

Notice that a solution u of (9) also satis�es (7). By setting

φ(θ) := ϕ◦(ν) = ϕ◦(cos θ, sin θ), (10)

a straightforward calculation gives

φ(θ) + φ′′(θ) = D2ϕ◦(ν)τ · τ, (11)

so that we can rewrite the �ow (9) as

ut = φ(θ)(φ(θ) + φ′′(θ))κν = ψ(θ)κν, (12)

where κ is the Euclidean curvature and

ψ(θ) := φ(θ)(φ(θ) + φ′′(θ)). (13)

Note that by (5), the ellipticity of ϕ implies that ψ ≥ C̃ > 0.
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3 Approximation of ϕ-regular curves

In [6, Lemma 3] (see also [15, Remark 3]) it is shown that given an anisotropy ϕ, it is
possible to construct a sequence of anisotropies ϕε, such that ϕε and ϕ

◦
ε are elliptic and

belong to C∞(R2 \ {0}), and such that ϕε converges uniformly to ϕ on compact subsets of
R2 as ε→ 0.

In this section we approximate a ϕ-regular curve u by a family uε of smooth ϕε-regular
curves, where ϕε > ϕ is a family of C∞(R2 \ {0}) elliptic anisotropies approximating ϕ.

Lemma 3. Let u be a ϕ-regular curve with |κϕ| 6 C. Then, for a given sequence ϕε → ϕ
with ϕε ∈ C∞(R2 \ {0}), elliptic and ϕ 6 ϕε (which is equivalent to Wϕε ⊂ Wϕ), there
exists a sequence of curves uε of class C∞, such that uε → u uniformly as ε → 0 and
|κϕε | 6 C ′ uniformly in ε, where C ′ > C is arbitrarily close to C.

Proof. The main idea is to localize [15, Lemma 1], where the result is proved for an
embedded curve u which is the boundary of a set E. The argument employed in [15,
Lemma 1] is to take the union of all the Wul� shapes of type x+RWϕε , R = 1/C, contained
in the set E (think for instance of the situation where E is a "thick" t-shaped set and
ϕ is the L∞-norm). The boundary of this new set Ẽε essentially regularizes the curve u
(�from inside�) attaching arcs of Wul� shapes RWϕε where ∂E has corners. Repeating the
same operation on the complementary Ẽcε one smoothes out also the remaining corners.
We shall adapt this method to the case of a general immersed curve, by exploiting the
fact that the curve is locally a Lipschitz graph. Roughly speaking, the idea is to consider
portions u([x− δ, x+ δ]) of the curve u, extend them with straight lines in order to obtain
a global graph, and then perform the construction mentioned above.
Step 1: covering u(S1) with graphs. Note that the curve u is locally a Lipschitz graph. We
cover u(S1) by u([xi − αi, xi + βi]) such that

(i) u(S1) = ∪Ni=1u(Ii) where Ii = (xi − αi, xi + βi),

(ii) u|[xi−αi,xi+βi] is a graph and u is di�erentiable at xi − αi and xi + βi,

(iii) The intersection of the images of two consecutive graphs u(Ii) ∩ u(Ii+1) contains a
neighborhood of a point yi = u(wi) such that u and the Cahn-Ho�man vector �eld
N are di�erentiable at wi and ∂sN(wi) 6= 0. In addition, if yi belongs to (the closure
of) a straight line, we require that this line is entirely included in u(Ii) ∩ u(Ii+1).

This is possible since N is Lipschitz and therefore di�erentiable almost everywhere and
since every region of zero anisotropic curvature can be included in a graph. Indeed, in
such regions, the Cahn-Ho�man vector �eld N is constant. Therefore, since we have
ν(x)

ϕ◦(ν(x)) ∈ ∂ϕ(N(x)) (where ν(x) denotes the locally oriented Euclidean normal to u at x)

and since at a point Nconst the subdi�erential ∂ϕ(Nconst) comprises at most a segment of
�nite length (recall that the duality map maps a unit ball into its dual ball), the normal ν
is forced to remain in a non-�at cone and the region to remain a graph.
Step 2: smoothing construction for graphs. We prolongate each u(Ii) by attaching two half
lines with slope ∂xu(xi−αi) and ∂xu(xi +βi). We then obtain the graph Γf of a Lipschitz
function f with u(Ii) ⊂ Γf . From our assumptions on u and Lemma 1, it follows that Γf
satis�es the RWϕ-condition (indeed, if this were not the case we get a contradiction by

8



using [10, Lemma 8.2]). Therefore also the R′Wϕ-condition is satis�ed for any 0 < R′ < R.
In the next step, we will choose a suitable R′ < R needed to glue together our local
constructions. We now apply the result in [15, Lemma 1] to the subgraph Sf of f , with R

′

instead of R, and obtain a regularized set

Sxi,ε :=
⋃{

(p+R′Wϕε)
∣∣ (p+R′Wϕε) ⊂ Sf

}
.

Moreover by construction, Sxi,ε satis�es the inner R
′Wϕε-condition and the outer R′Wϕ-

condition.
Recalling that ϕε ≥ ϕ, we have that the set ∂Sxi,ε \ Γf is a union of arcs of Wul� shape
R′Wϕε . We now de�ne the curve u−ε by replacing u(Ii)\∂Sxi,ε by these arcs of Wul� shape.
We show next that the construction is compatible in some subregion of u(Ii) ∩ u(Ii+1) so
that the approximation curves u−ε of two adjacent local graphs can be well connected/glued
across this subregion.
Step 3: connecting the approximate graphs. Let us now prove the main claim of Lemma 3,
that is the constructions of Sxi,ε and Sxi+1,ε are compatible: they can be connected in a
canonical way. To do so, we will take advantage of the point yi.

First, notice that the points y ∈ u(S1) where u and N are di�erentiable and ∂sN 6= 0
are of two kinds. Either y belongs to a �at edge of u(S1) around which u is locally convex,
which is parallel to an edge of the Wul� shape RWϕ and whose length is bigger than the
corresponding edge of RWϕ (recall for instance Remark 3), or u is not �at around y and
the Wul� shape p+RWϕ ⊂ Sf which touches Γf at y from inside is not �at either around
y.

We now prove that for ε small enough, Sxi,ε and Sxi+1,ε coincide around yi, and therefore
can be connected. We �rst deal with the case yi belongs to a �at edge ` of u(S1). Thanks
to our assumptions u(Ii) ∩ u(Ii+1) contains the whole `. The smoothing procedure leaves
a part of this line unchanged (because of the reduction of R into R′) when building Sxi,ε
as well as Sxi+1,ε, and the two curves can therefore be connected (see Figure 1).

Now, let us assume that yi belongs to a non-�at part of u(S1) (see Figure 2). Then,
the curve u at yi has a contact with a Wul� shape pi +RWϕ, which cannot be �at around
yi either. (In fact u(S1) and ∂(pi + RWϕ) might even coincide in a neighborhood of yi;
however the Wul� shape ∂(pi + RWϕ) is locally strictly convex at yi.) As a result, the
contact between u(S1) and the Wul� shape pi + R′Wϕ takes place at yi only. Let ηi > 0
be such that (Bηi(yi)∩u(Ii)) ⊂ u(Ii)∩u(Ii+1). Since the approximate Wul� shape R′Wϕε

Hausdor� converges to R′Wϕ, it must touch u(S1) inside the ball of radius ηi, provided ε is
small enough (depending on ηi, but these are in �nite number anyway). Hence, every graph
which coincide with u(S1) around yi is smoothed similarly on Bηi(yi). We can therefore
connect Sxi,ε and Sxi+1,ε.

Eventually, we can connect all these pieces of graphs and obtain a curve u−ε which is
locally a Lipschitz graph, and satis�es locally the inner R′Wϕε-condition and the outer
R′Wϕ-condition, where outer (resp. inner) means in the direction of the local orientation
given by the vector ν (resp. −ν). Notice also that, by construction, the Hausdor� distance
between u(Ii) and u

−
ε (Ii) is bounded above by the Hausdor� distance between R′∂Wϕ and

R′∂Wϕε , hence in particular it goes to zero as ε goes to zero.
On the other hand the �added arcs� u(Ii) \ Sxi,ε which constitute parts of u−ε , locally
satis�es the R′Wϕε condition, which is equivalent to say that these arcs are ϕε-regular

9



Figure 1: Typical situation when yi belongs to a �at edge of u(S1).

Figure 2: Typical situation when yi belongs to a non-�at part of u(S1).
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with |κϕε | 6 C ′, C ′ = 1/R′ (see Lemma 2). This means that the added arcs are of class
C1,1 (and must admit a good local parametrization) and by construction concave (with
respect to the local orientation). In particular their length is controlled above by the length
of the replaced piece of curve and below by the distance of the endpoints of the arcs, and
the length of u−ε tends to the length of u as ε→ 0.
Step 4: building an actual curve. We have explained so far how to construct geometrically
the approximation u−ε . However we want some control of its parametrization too, since we
claim uniform convergence of the approximate curves uε towards u. This can be done by
exploiting Dini's theorem on each local graph u(Īi) and using the fact that we have a �nite
number of them.

We proceed similarly with u−ε instead of u and by smoothing on the other side of the
curve to build our approximation uε, i.e we perform the analogous construction on the
curve u−ε (which has the same orientation of u) by considering the envelope of the Wul�
shapes R′Wϕε that are locally above u−ε .

Finally, by a convolution argument we can assume that the curves uε are of class C
∞

and satisfy |κϕε | 6 C ′, with C ′ > C arbitrarily close to C.

Remark 6. Note that by construction the lengths of the curves uε(S
1) are uniformly

bounded from above and below.

4 Existence of ϕ-regular �ows

4.1 Smooth and elliptic anisotropies

Goal of this section is to show that if we have a bound of type |κϕε(0)| 6 C ′ for ini-
tial smooth curves uε(0), then we can �nd a time interval (independent of ε) where the
anisotropic curve shortening �ows (9) associated to the anisotropies ϕε and initial data
uε(0) exist.

In this section, for simplicity of notation we drop the index ε and write ϕ instead of
ϕε. In other words we assume ϕ ∈ C∞(R2 \ {0}) to be an elliptic anisotropy.

First of all we collect some important properties of the anisotropic curvature �ow (9)
(or equivalently (12)). For analogous results in the isotropic case see for instance [13].

In what follows it is important to keep in mind that (5) holds, hence ψ ≥ C̃ (recall (13)).

Theorem 1. [3, Theorem 3.1] There exists a smooth solution to (9) on [0, T ).

We start by deriving the evolution laws of relevant geometric quantities.

Lemma 4. The following holds

∂t∂s(·) = ∂s∂t(·) + ψ(θ)κ2∂s(·)
τt = (ψ(θ)κ)sν

νt = −(ψ(θ)κ)sτ

κt = (ψ(θ)κ)ss + ψ(θ)κ3 (14)

θt = (ψ(θ)κ)s.

11



Proof. Let f : S1 → R2, f = f(x, t). Then, we compute (note that the derivatives in x
and t can commute)

∂t∂sf = ∂t

(
∂xf

|ux|

)
= −〈utx , ux〉

|ux|3
∂xf +

∂t∂xf

|ux|

= −〈∂s(ψ(θ)κν) , τ〉 ∂sf +
∂x
|ux|

∂tf = ψ(θ)κ2∂sf + ∂s∂tf.

Applying this formula to the other quantities, we get

τt = ∂t(∂su) = ∂s(∂tu) + ψ(θ)κ2∂su = ∂s(ψ(θ)κν) + ψ(θ)κ2τ = (ψ(θ)κ)sν.

We prove the third formula similarly.
Writing κ = 〈τs , ν〉, we get

κt = 〈∂tτs , ν〉+ 〈τs , ∂tν〉 .

Since τs is proportional to ν and νt is proportional to τ , the second term vanishes. We
obtain

κt =
〈
∂s((ψ(θ)κ)sν) + ψ(θ)κ2τs , ν

〉
= (ψ(θ)κ)ss + ψ(θ)κ3.

Finally, recalling that ν = (cos θ, sin θ), one has νt = −θt(sin θ,− cos θ), which implies the
last formula.

We now show that we can �nd a time interval where the anisotropic curvature does not
blow up, provided we know that its values at the initial time are bounded by a constant
C
′
. This result holds for any smooth elliptic anisotropy ϕ whose associated anisotropic

curvature κϕ is bounded by C ′ on the initial curve.

Proposition 1. Suppose ‖κϕ(0)‖L∞(S1) 6 C ′. Then the anisotropic curvature κϕ remains

bounded on any time interval [0, T ] ⊂ [0, 1
2C′2 ) (provided the �ow exists on this time inter-

val). Precisely we have

‖κϕ(t)‖L∞(S1) 6
C ′√

1− 2T‖κϕ(0)‖2
L∞(S1)

.

Proof. First of all recall that due to (11) we have κϕ = κ(φ+φ′′). For simplicity we denote
by h the quantity φ+ φ′′. By Lemma 4 we infer that

∂tκϕ = ∂t(κh) = h[(∂ss(ψ(θ)κ) + κ3ψ] + κh′∂s(ψ(θ)κ)

= h[∂s(κ
2ψ′ + κsψ) + κ3ψ] + κh′(κ2ψ′ + κsψ)

= h(3κκsψ
′ + κ3ψ′′ + κssψ + κ3ψ) + κ3h′ψ′ + κκsh

′ψ

and
∂ssκϕ = ∂ss(κh) = ∂s(κsh+ κ2h′) = κssh+ 3κsκh

′ + κ3h′′.

Noting that

(∂t − ψ∂ss)
κ2
ϕ

2
= κϕ∂tκϕ − ψκϕ∂ssκϕ − ψ(∂sκϕ)2

12



we get

(∂t − ψ∂ss)
κ2
ϕ

2
= −ψκϕ

[
κssh+ 3κsκh

′ + κ3h′′
]
− ψ(∂sκϕ)2

+ κϕ
[
h(3κκsψ

′ + κ3ψ′′ + κssψ + κ3ψ) + κ3h′ψ′ + κκsh
′ψ
]

= κsκϕκ(3hψ′ − 2h′ψ) + κϕκ
3(hψ + hψ′′ + h′ψ′ − ψh′′)− ψ(∂sκϕ)2.

Now, note that since
ψ′ = (hφ)′ = h′φ+ hφ′,

ψ′′ = h′′φ+ 2h′φ′ + hφ′′,

we obtain
3hψ′ − 2h′ψ = 3h2φ′ + hh′φ

and

hψ+hψ′′+h′ψ′−ψh′′ = h2φ+hh′′φ+2hh′φ′+h2φ′′+(h′)2φ+hh′φ′−hh′′φ = h3+3hh′φ′+(h′)2φ.

As a result,

(∂t − ψ∂ss)
κ2
ϕ

2
= κsκϕκ(3h2φ′ + hh′φ) + κϕκ

3(h3 + 3hh′φ′ + (h′)2φ)− ψ(∂sκϕ)2.

Since

∂s
κ2
ϕ

2
= κϕ(κsh+ κ2h′),

we can write

κsκϕκ(3h2φ′ + hh′φ) + κ3κϕ(3hh′φ′ + (h′)2φ) = (3κhφ′ + h′κφ)∂s
κ2
ϕ

2

which yields

(∂t − ψ∂ss)
κ2
ϕ

2
6 (3κhφ′ + h′κφ)∂s

κ2
ϕ

2
+ κ4

ϕ.

At a maximal point for κ2
ϕ, the quantity ∂sκ

2
ϕ vanishes and ∂ssκ

2
ϕ is nonpositive. As a

result, letting g := max
S1

κ2
ϕ and by [33, Lemma 2.1.3], we have d

dtg 6 2g2, which implies

g(t) 6
g(0)

1− 2tg(0)
(15)

as long as 1− 2tg(0) > 0. Since by assumption g(0) 6 (C ′)2, the anisotropic curvature κϕ
cannot blow up on a time interval [0, T ] ⊂ [0, 1

2C′2 ).

The rest of this section is devoted to showing that if the maximal time of existence of
the �ow is �nite, then both the isotropic and anisotropic curvatures have to blow-up.

For the evolution of the derivatives of the curvature we have

13



Lemma 5. For j ∈ N, j ≥ 1 we have

∂t(∂
j
sκ) = ψ(θ)(∂jsκ)ss + (j + 3)ψ′(θ)κ(∂jsκ)s

+ Pj(ψ,ψ
′, ψ′′, κ, κs)∂

j
sκ+Qj(ψ,ψ

′, . . . , ψ(j+2), κ, . . . , ∂j−1
s κ) (16)

where Pj(·) and Qj(·) are polynomials in the given variables and ψ(m) = ∂mθ ψ.

Proof. The proof is by induction on j and relies on Lemma 4 and the fact that ψ(θ)s =
ψ′(θ)κ. For j = 1 we have that

∂t∂sκ = ∂s∂tκ+ ψ(θ)κ2∂sκ

= ∂s((ψ(θ)κ)ss + ψ(θ)κ3) + ψ(θ)κ2∂sκ

= ψ(θ)κsss + 4ψ′(θ)κκss + ψ(3)(θ)κ4 + ψ′(θ)κ4 + (6ψ′′(θ)κ2 + 4ψ(θ)κ2 + 3ψ′(θ)κs)κs.

The induction step follows with similar arguments.

Lemma 6. Let w := log |ux|. There holds

wt = −ψ(θ)k2. (17)

In particular ‖ux(t)‖∞ 6 ‖ux(0)‖∞.

Proof. A direct computation gives

wt = τ · ∂sut = τ · ψ(θ)κνs = −ψ(θ)k2.

The second statement follows from ψ ≥ 0.

Note that if we have a bound on the curvature, then from −wt 6 C(‖κ‖∞, ‖ψ‖∞) we
also infer that |ux(t)| ≥ (infS1 |ux(0)|)e−C(‖κ‖∞,‖ψ‖∞)t.

Lemma 7. Assume that (9) has a smooth solution on [0, t̄], with t̄ > 0. Then

max
S1×[0,t̄]

|∂jsκ| 6 Cj , (j ∈ N),

where Cj depends on t̄, C̃ (as in (5)), ‖ψ(l)‖∞ for l = 0, . . . , j + 2, Cl for l 6 j − 1,

‖∂jsκ(0)‖∞, and maxS1×[0,t̄] |κ|.

Proof. The proof goes by induction on j. Let v = ∂jsκ. From Lemma 5 we know that

vt = ψ(θ)vss + (j + 3)ψ′(θ)κvs + Pj(ψ,ψ
′, ψ′′, κ, κs)v +Qj(ψ,ψ

′, . . . , ψ(j+2), κ, . . . , ∂j−1
s κ).

(where recall that ∂s = 1
|ux|∂x and vss = 1

|ux|2 vxx−
vx
|ux|τ ·

uxx
|ux|2 ). Together with ψ(θ) ≥ C̃ > 0

(the anisotropy is elliptic) we obtain a parabolic quasilinear equation for which we can apply
arguments given in [31, Thm. 9.5].

More precisely let us look at the case where j ≥ 2. Without loss of generality we may
assume that there exists a point in S1 × (0, t̄] where v attains a positive maximum (if not
argue with −v). The map v satis�es an equation of type

0 = −vt + ψ(θ)vss + a(s, v, vs)

14



where, in view of the induction hypothesis, we have that a(s, v, 0) 6 c(|v|+ 1) 6 α|v|+ β
|v|

with positive constants α and β depending on ‖ψ(l)‖∞ for l = 0, . . . , j+ 2, Cl for l 6 j−1,
and maxS1×[0,t̄] |κ|. Set λ = −α − 1. Suppose P = (x, t) ∈ S1 × (0, t̄] is a point in which

m := eλtv attains a positive maximum. Thenmt = λeλtv+eλtvt and at P we havemx = 0,
mt ≥ 0 (thus ms = vs = 0), mxx 6 0 (thus mss 6 0, vss 6 0). At P (where v > 0) we have

0 = −vt + ψ(θ)vss + a(s, v, vs) 6 −vt + α|v|+ β

|v|
= (λ+ α)v +

β

v
= −v +

β

v
.

Thus v(P ) 6
√
β and we infer that

sup
S1×[0,t̄]

v 6 e(α+1)t̄(
√
β + sup

S1

v+(0)).

Arguing in the same way with −v instead of v, we get a bound also on v− and therefore
on |v|.

For the case j = 1, the conclusion of Lemma 5 does not let us apply the same maximum
principle. To cope with this di�culty, we will study the quantity v := ψ(θ)

3
2κ. To this

aim, let us compute using Lemma 4 (for simplicity we drop the dependence on θ in the
formulas for ψ and its derivatives)

∂t(ψ
3/2(θ)κ) =

3

2
(κ2ψ′ + κsψ)ψ′ψ1/2κ+ ψ3/2(3κκsψ

′ + κ3ψ′′ + κssψ + ψκ3)

whereas

∂s(ψ
3/2κ) =

3

2
κ2ψ′ψ1/2 + ψ3/2κs. (18)

Then, we have

∂ss(ψ
3/2κ) = 3κκsψ

′ψ1/2 +
3

2
κ3ψ′′ψ1/2 +

3

4
κ3(ψ′)2ψ−1/2 +

3

2
κψ′ψ1/2κs + ψ3/2κss

=
9

2
κκsψ

′ψ1/2 +
3

2
κ3ψ′′ψ1/2 +

3

4
κ3(ψ′)2ψ−1/2 + ψ3/2κss

and

∂sss(ψ
3/2κ) =

9

2
κ2
sψ
′ψ1/2 +

9

2
κκssψ

′ψ1/2 +
9

2
κ2κsψ

′′ψ1/2

+
9

4
κ2κs(ψ

′)2ψ−1/2 +
9

2
κ2κsψ

′′ψ1/2 +
3

2
κ4ψ′′′ψ1/2 +

3

4
κ4ψ′′ψ′ψ−1/2

+
9

4
κ2κs(ψ

′)2ψ−1/2 +
3

2
κ4ψ′ψ′′ψ−1/2 − 3

8
κ4(ψ′)3ψ−3/2 +

3

2
κψ′ψ1/2κss + ψ3/2ksss

=
9

2
κ2
sψ
′ψ1/2 + 6κκssψ

′ψ1/2 + 9κ2κsψ
′′ψ1/2 +

9

2
κ2κs(ψ

′)2ψ−1/2

+
3

2
κ4ψ′′′ψ1/2 +

9

4
κ4ψ′′ψ′ψ−1/2 − 3

8
κ4(ψ′)3ψ−3/2 + ψ3/2ksss.
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Recall Lemma 4 and the calculations performed in Lemma 5, we also compute

∂t(∂s(ψ
3/2κ)) = 3κκtψ

′ψ1/2 +
3

2
κ2(ψ′κ2 + κsψ)ψ′′ψ1/2

+
3

4
κ2(ψ′)2(ψ′κ2 + κsψ)ψ−1/2 +

3

2
(ψ′κ2 + κsψ)ψ′ψ1/2κs + ψ3/2∂tκs

= 3κψ′ψ1/2(3κκsψ
′ + κ3ψ′′ + κssψ + ψκ3)

+
3

2
κ2(ψ′κ2 + κsψ)ψ′′ψ1/2 +

3

4
κ2(ψ′)2(ψ′κ2 + κsψ)ψ−1/2 +

3

2
(ψ′κ2 + κsψ)ψ′ψ1/2κs

+ ψ5/2κsss + 4ψ
3
2ψ′κκss + ψ

3
2ψ(3)κ4 + ψ

3
2ψ′κ4 + ψ

3
2 (6ψ′′κ2 + 4ψκ2 + 3ψ′κs)κs

= 9κ2κs(ψ
′)2ψ1/2 + 3κ4ψ′ψ′′ψ1/2 + 3κκssψ

′ψ3/2 + 3κ4ψ′ψ3/2

+
3

2
κ2(ψ′κ2 + κsψ)ψ′′ψ1/2 +

3

4
κ2(ψ′)2(ψ′κ2 + κsψ)ψ−1/2 +

3

2
(ψ′κ2 + κsψ)ψ′ψ1/2κs

+ ψ5/2κsss + 4ψ3/2ψ′κκss + ψ3/2ψ(3)κ4 + ψ3/2ψ′κ4 + ψ3/2(6ψ′′κ2 + 4ψκ2 + 3ψ′κs)κs

As a result, we get

∂t(∂s(ψ
3/2κ)) = ψ∂ss(∂s(ψ

3/2κ)) + κψ′(∂s(ψ
3/2κ))s

+ ∂s(ψ
3/2κ) · P (κ, ψ, ψ−1, ψ′, ψ

′′
) +Q(κ, ψ1/2, ψ−1/2, ψ3/2, ψ, ψ′, ψ′′, ψ(3)),

where P and Q are polynomials in the given variables.
Finally, as before, v = ∂s(ψ

3/2κ) satis�es an equation of the type

vt = ψ(θ)vss + a(s, v, vs),

where a(s, v, 0) 6 c(|v|+ 1) and we can conclude again that v is bounded. This, thanks to
(18) and the result for j = 0 (κ is bounded), implies that κs is bounded and concludes the
proof.

Proposition 2. Let T be the maximal time of existence of (9) and assume that T < ∞.
Then

lim sup
t→T

‖κ‖∞ = +∞. (19)

Proof. Assume that |κ| is uniformly bounded for all t ∈ [0, T ). Then the previous lemmas
imply a uniform bound on |ux|, |ux|−1 and |∂jsκ|. Using (9) we can write

u(x, t2)− u(x, t1) =

∫ t2

t1

ϕ◦(ν(x))(D2ϕ◦(ν(x))τ(x) · τ(x))κ(x)ν(x)dt.

The bounds on κ and on the anisotropy map imply that u(x, t2) has a limit when t2 → T .
It remains to show that the convergence of u(·, t) is in fact in C∞. This is achieved by
showing that we can get uniform bounds (in time) for all derivatives of the map u in the
original parametrization.
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First of all note that for a function h : S1 → R we have that

∂mx h− |ux|m∂ms h = Pm(|ux|, . . . , ∂m−1
x |ux|, h, . . . , ∂m−1

s h), (20)

where Pm is a polynomial in the given variables. Therefore if we can show that uniform
bounds hold for the derivatives of the length element |ux| then using Lemma 7 we obtain
bounds for the derivatives |∂mx κ| and |∂mx ux| on (0, T ).

It remains to show that the derivatives of the length element z = |ux| stay bounded.
Di�erentiating the PDE for z = |ux|, namely

zt = −ψ(θ)κ2z,

we can write

(∂mx z)t = −ψ(θ)κ2∂mx z +
∑

i+j=m,j6m−1

c(i, j,m)∂ix(ψ(θ)κ2)∂jxz (21)

for some coe�cients c(i, j,m). Here we proceed by induction. Assuming that |∂jxz| is
bounded up to order m− 1, then equation (20) applied to h = ψ(θ)κ2 and Lemma 7 give
boundedness of the terms appearing in (21), so that we infer

(∂mx z)t 6 −ψ(θ)κ2∂mx z + c.

A Gronwall argument yields then boundedness of ‖∂mx z‖∞ on (0, T ).
Having achieved C∞ convergence, we can now extend u past T , which gives a contra-

diction. The claim follows.

Note that since κϕ = D2ϕ◦(ν)τ · τκ the previous proposition implies that also the
anisotropic curvature blows-up if the maximal time of existence of the �ow (9) is �nite.

Similarly to the isotropic case we get a lower bound for the curvature as follows.

Lemma 8. Let T be the maximal time of existence of (9) and suppose T <∞. Then

lim inf
t→T

√
T − t‖κ‖L∞ ≥

1√
2α

(22)

where α = maxS1 |ψ + ψ′′|.

Proof. Let w := κ2. Then from (14) we infer that

wt = ψ(θ)wss + 2(ψ(θ) + ψ′′(θ))w2 + 3ψ′(θ)ws
√
w sign(κ)− 2ψ(θ)(ks)

2

6 ψ(θ)wss + 2(ψ(θ) + ψ′′(θ))w2 + 3ψ′(θ)ws
√
w sign(κ).

Let M(t) := maxS1 w ≥ 0. Then using [33, Lemma 2.1.3] we infer

d

dt
M(t) 6 2|ψ + ψ′′|M2(t) 6 2αM2(t) 6 2α(M(t) + δ)2,

where α = maxS1 |ψ + ψ′′| and δ > 0. Integrating on [t, s] ⊂ [0, T ) we obtain

− 1

M(s) + δ
+

1

M(t) + δ
6 2α(s− t).

Letting s → T along a sequence of times so that M(s) → ∞ by the Proposition 2, and
choosing δ arbitrary small we get the claim.
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4.2 General anisotropies

We now show short time existence of ϕ-regular �ows, starting from a ϕ-regular initial
curve.

Theorem 2. Let u0 be a closed ϕ-regular curve. Then there exist T > 0 and a ϕ-regular
�ow u on [0, T ], with u(0) = u0.

Proof. Let ϕε > ϕ be a family of smooth and elliptic anisotropies converging to ϕ as
ε → 0. Let uε,0 be the approximations of u0 described in Lemma 3. Recalling Remark 6,
up to a reparametrization, we can assume that |(uε,0)x| ≤ C, so that the curves uε,0 are
equi-Lipschitz in ε.

Denote by uε the solutions to (7) with initial data uε,0, that is, the functions uε solve
the equation

(uε)t = κϕεNε, (23)

where Nε = Dϕ◦ε(νε) is the Cahn-Ho�man vector �eld.
In view of Lemma 3 and Proposition 1 the curves uε have curvature κϕε bounded by

a constant Λ which does not depend on ε and t, as long as t does not reach a certain T
which depends only on u0. As a consequence, by Proposition 2 we can assume that the
solutions uε are all de�ned in the same time interval [0, T ]. Our goal is to pass to the limit
in uε as ε→ 0.

Thanks to Lemma 6 the maps uε are equi-Lipschitz in space. Moreover, by Propo-
sition 1 and (23) the solutions uε are also equi-Lipschitz in time. Using Ascoli-Arzela
Theorem we can ensure that uε converge, up to a subsequence, to some Lipschitz function
u such that u(0) = u0. We claim that u is a ϕ-regular �ow.

Fix (x̄, t̄) ∈ S1×(0, T ). By Remark 5, in a neighborhood V of (u(x̄, t̄), t̄) with u(x̄, t̄) =
limε uε(x̄, t̄) equation (23) can be rewritten as

Ñε = Dϕ◦ε(∇dε), (dε)t = divÑε +O(dε) a.e. in V . (24)

where the functions dε, Ñε are de�ned as in Remarks 4 and 5. In particular, dε is the
ϕε-distance function from the support of uε, restricted to a neighborhood of (u(x̄, t̄), t̄)
and Ñε is a suitable extension of the Cahn-Ho�man �eld Nε.

From the convergence of uε to u we immediately get the uniform convergence of dε
to some function d in V . Notice that d is the ϕ-distance function to the support of u,
restricted to a neighborhood of (u(x̄, t̄), t̄). We now show that the �elds Ñε also converge
to some �eld ñ which is the extension of a Cahn-Ho�man vector �eld n for u. By the fact
that the curvatures κϕε are uniformly bounded and the control on the lengths from above
and below (Remark 6, Lemma 6 and comments below), it follows for every �xed time t that
Nε(·, t) are equi-Lipschitz with respect to arc-length and (up to a subsequence) converge
uniformly to a Lipschitz �eld n(s, t). Let ñ be the extension in V (cf. Remark 5) satisfying
n(s(x), t) = ñ(s(x), t) = ñ(x, t). Since Ñε are uniformly bounded in V , they converge, up
to a subsequence in the weak* topology of L∞(V ), to the vector �eld ñ ∈ L∞(V ). By
ϕε → ϕ we infer that ϕ(ñ) ≤ 1. Again using the uniform boundedness of the anisotropic
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curvatures κϕε and (6) we infer that (div Ñε) weak*- converges to (div ñ) in L∞(V ). We
can now pass to the limit in (24) and obtain that d satis�es

dt = divÑ +O(d) a.e. in V . (25)

We now show that Ñ satis�es the inclusion

Ñ ∈ ∂ϕo(∇d) a.e. in V . (26)

Indeed, letting ψ ∈ C1
c (V ) and recalling that Ñε · ∇dε = ϕoε(∇dε) = 1, we have∫

V
ψ dxdt =

∫
V
ψ Ñε · ∇dε dxdt = −

∫
V
dε
(
Ñε · ∇ψ + ψdivÑε

)
dxdt.

Passing to the limit in the right-hand side, we get∫
V
ψ dxdt = −

∫
V
d
(
Ñ · ∇ψ + ψdivÑ

)
dxdt =

∫
V
ψ Ñ · ∇d dxdt,

which is equivalent to (26).
It then follows that u is a ϕ-regular �ow on [0, T ], which proves the thesis.

The uniqueness of ϕ-�ows for general anisotropies and initial data is still an open
problem. However, it has been proved in [7] that the evolution is unique if the initial curve
is embedded. Moreover, in the purely crystalline case, that is when Wϕ is a polygon and
when the initial curve is piecewise linear and ϕ-regular, the problem reduces to a family
ODE's and the solution is therefore unique (see [27]).
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