Variational methods in image analysis
-
The total variation flow in R^N,
G. Bellettini, V. Caselles and M. Novaga,
J. Differential Eqs.,
vol. 184 n. 2, pp. 475-525, 2002
(
.pdf).
-
The total variation flow,
M. Novaga,
International Series of Numerical Mathematics,
vol. 147, pp. 225-236, 2003
(
.pdf).
-
Explicit solutions of the eigenvalue problem - div (Du/|Du|) = u,
G. Bellettini, V. Caselles and M. Novaga,
SIAM J. on Math. Anal., vol. 36 n. 4, pp. 1095-1129, 2005
(
.pdf).
-
Global solutions to the gradient flow equation
of a nonconvex functional,
G. Bellettini, M. Novaga and E. Paolini,
SIAM J. on Math. Anal., vol. 37 n. 5, pp. 1657-1687, 2006
(
.pdf).
-
The discontinuity set of solutions of the TV denoising problem and some extensions,
V. Caselles, A. Chambolle and M. Novaga,
Multiscale Modeling and Simulation, vol. 6 n. 3, pp. 879-894, 2007
(
.pdf).
-
Convergence of discrete schemes for the Perona-Malik equation,
G. Bellettini, M. Novaga, M. Paolini and C. Tornese,
J. Differential Eqs., vol. 245, pp. 892-924, 2008
(
.pdf).
-
Classification of the equilibria for the semi-discrete Perona-Malik equation,
G. Bellettini, M. Novaga, M. Paolini and C. Tornese,
Calcolo, vol. 46 n. 4, pp. 221-243, 2009
(
.pdf).
-
An introduction to Total Variation for Image Analysis,
A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock,
in
"Theoretical Foundations and Numerical Methods for Sparse Recovery",
De Gruyter, Radon Series Comp. Appl. Math.,
vol. 9, pp. 263-340, 2010
(.pdf).
-
Total Variation and Cheeger sets in Gauss space,
V. Caselles, M. Miranda and M. Novaga,
J. Funct. Anal., vol. 259 n. 6, pp. 1491-1516, 2010
(.pdf).
-
Convergence for long-times of a semidiscrete Perona-Malik equation in one dimension,
G. Bellettini, M. Novaga and M. Paolini,
Math. Mod. Meth. Appl. Sc., vol. 21 n. 2, pp. 1-25, 2011
(
.pdf).
-
Total variation in imaging,
V. Caselles, A. Chambolle and M. Novaga,
in "Handbook of Mathematical Methods in Imaging",
Springer, pp. 1016-1057, 2011
(.pdf).
-
Regularity for solutions of the total variation denoising problem,
V. Caselles, A. Chambolle and M. Novaga,
Rev. Mat. Iberoamericana, vol. 27 n. 1, pp. 233-252, 2011
(.pdf).
-
On the gradient flow of a one-homogeneous functional,
A. Briani, A. Chambolle, M. Novaga and G. Orlandi,
Confluentes Mathematici, vol. 3 no. 4, 617-635, 2011
(.pdf).
-
On the jump set of solutions of the Total Variation flow,
V. Caselles, K. Jalalzai and M. Novaga,
to appear on Rend. Sem. Mat. Padova
(.pdf).
Torna alla Pagina principale