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Abstract. The aim of this note is to prove that quasi-minimizers of the perimeter are Reifen-

berg flat, for a very weak notion of quasi-minimality. The main observation is that smallness of
the excess at some scale implies smallness of the excess at all smaller scales.

1. Introduction

Motivated by applications to a variational model for charged liquid drops (see [10, 11, 7]), the
aim of this note is to study the regularity of quasi-minimizers of the (anisotropic) perimeter under
minimal assumptions. For a uniformly elliptic and regular anisotropy Φ (see Definition 2.1) and a
set of finite perimeter E, we define PΦ(E) as

PΦ(E) =

∫
∂E

Φ(x, νE)dHn−1.

Here νE denotes the (measure-theoretic) outward normal to E. For Λ, r0 > 0 we say that E is a
(Λ, r0)−minimizer of the perimeter PΦ if for every x ∈ Rn and r ≤ r0,

(1.1) PΦ(E) ≤ PΦ(F ) + Λrn−1 if E∆F ⊂ Br(x).

Our main result is the following (all constants depend implicitly on the dimension and on the
given anisotropy Φ)

Theorem 1.1. For every δ > 0, there exists ε(δ) > 0 such that if Λ ≤ ε then every (Λ, r0)−minimizer
is δ−Reifenberg flat (see Definition 2.2) outside a singular set of vanishing Hn−3 measure.

Remark 1.2. In the isotropic case, the Hausdorff dimension of the singular set is smaller than 8.

In [8] it is shown that in fact we cannot expect much more regularity under the weak minimality
condition (1.1). The classical theory for quasi-minimizers of the perimeter asserts that, under the
stronger condition

(1.2) PΦ(E) ≤ PΦ(F ) + Λrn−1+α ∀E∆F ⊂ Br(x),

with α ∈ (0, 1), quasi-minimizers are C1,α2 outside a small singular set (see [12, 3, 13, 9, 5]). The
closest result to ours is the one of Ambrosio and Paolini [2] where they prove that for the isotropic
perimeter P , if ω(r) is a rate function such that ω(r)→ 0 as r → 0 and if E satisfies

(1.3) P (E,Br(x)) ≤ (1 + ω(r))P (F,Br(x)) ∀E∆F ⊂ Br(x),

then outside a small singular set, ∂E is vanishing Reifenberg flat. Our result is thus an improve-
ment over [2] with a rate function which is small but not infinitesimal. Indeed, thanks to the
density estimates (see Proposition 3.1), condition (1.1) is equivalent (up to changing the value of
Λ) to

(1.4) P (E,Br(x)) ≤ (1 + Λ)P (F,Br(x)) ∀E∆F ⊂ Br(x).
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Our proof of Theorem 1.1 follows the classical route of regularity theory for minimizers of the
perimeter as pioneered by De Giorgi. The main ingredient is an ε−regularity result. To state it
we introduce the spherical excess:

(1.5) Exc(E, x, r) = min
ν∈Sn−1

1

rn−1

∫
∂E∩Br(x)

|ν − νE |2

2
dHn−1.

When x = 0 we simply write Exc(E, r) = Exc(E, 0, r).

Theorem 1.3. For every δ > 0 there exists ε(δ) > 0 such that if E is a (Λ, r0)−minimizer with
0 ∈ ∂E and (see Definition 2.1 for the definition of `)

Exc(E, r) + Λ + `r ≤ ε

then E is (δ, r2 )−Reifenberg flat in B r
2

.

The proof follows the standard Campanato iteration scheme with at its heart the excess improve-
ment by tilting lemma (see Lemma 4.6 below). In particular, we largely stick to the arguments in
[9] (and [5] for the treatment of the anisotropic case) where the proof is written in the language
of sets of finite perimeters. As also nicely explained in [4, Section 7], the result is derived by
the following main steps. The starting point is to obtain density upper and lower bounds (see
Proposition 3.1). The ingredients for the tilting lemma are then the following. In the small excess
regime, we show that locally ∂E can be mostly covered by the graph of a Lipschitz function u with
Dirichlet energy bounded by the excess (this is done combining the height bound, Proposition 4.2
with a Lipschitz approximation argument, Proposition 4.4). Moreover the approximating function
u is almost harmonic (see (4.4)). Using this information and the regularity theory for harmonic
functions we obtain smallness of the flatness f2,ν (see (2.3) for its definition) at a smaller scale.
The tilt lemma is then concluded by the Cacciopoli inequality, Proposition 4.5, which bounds the
excess by the flatness.
Our main observation is that while in the classical theory the tilt lemma leads to excess decay, in
the sense that under condition (1.2) or even (1.3), the excess converges to 0 as r → 0, in our setting
the excess is only going to remain small (essentially bounded by Λ). For a similar application of
this idea in the context of optimal transport see [6].
Once we know that the excess and thus also the flatness remain small at all scales, the Reifenberg
regularity follows from the height bound, Proposition 4.2 (see also [2]).

In order to conclude the proof of Theorem 1.1, we also need to estimate the size of the singular
set. This is obtained by a classical stability argument, essentially the continuity of the excess,
which allows to transfer the known results for minimizers of the perimeter (i.e. the case Λ = 0)
to the case Λ > 0 small. We close this introduction with another simple but useful consequence
of this stability argument:

Corollary 1.4. For every δ > 0 there exists Λ̄ = Λ̄(δ) such that for every smooth compact set
E, if Ek are (Λk, r0)−minimizers with lim supk→∞ Λk ≤ Λ̄ and Ek → E in L1, then there exists
r > 0 such that if k is large enough, ∂Ek are uniformly (δ, r)−Reifenberg flats.

2. Definitions and notation

We refer to [1, 9] for the definitions and main properties of sets of finite perimeter. In particular
we denote by ∂E the measure-theoretic boundary and ∂∗E the reduced boundary. We denote by
νE the outward normal to E and by P (E) its (measure theoretical) perimeter.

Definition 2.1. We say that Φ : Rn×Rn → R+ is an elliptic integrand if it is lower-semicontinous
and if Φ(x, ·) is a positive 1-homogeneous and convex function, that is Φ(x, tν) = tΦ(x, ν) for t > 0.
For a set of finite perimeter E and an open set U we define

PΦ(E,U) =

∫
∂∗E∩U

Φ(x, νE(x)) dHn−1(x).
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If U = Rn we simply write PΦ(E) = PΦ(E,Rn). An elliptic integrand is called a uniformly elliptic
and regular anisotropy if for every x ∈ Rn, Φ(x, ·) ∈ C2,1(Sn−1) and there exists λ ≥ 1 and ` ≥ 0
such that for any x, y ∈ Rn, and ν, ν′ ∈ Sn−1 and e ∈ Rn,

(2.1)

1

λ
≤ Φ ≤ λ

|Φ(x, ν)− Φ(y, ν)|+ |∇Φ(x, ν)−∇Φ(y, ν)| ≤ `|x− y|

|∇Φ(x, ν)|+ |∇2Φ(x, ν)|+ |∇
2Φ(x, ν)−∇2Φ(x, ν′)|

|ν − ν′|
≤ λ

∇2Φ(x, ν)e · e ≥ |e− (e · ν)ν|2

λ
,

where ∇Φ and ∇2Φ denote the gradient and the Hessian with respect to the ν variable.

We will use the notation A . B to indicate that there exists a constant C depending on the
dimension n and on the fixed anisotropy Φ through λ such that A ≤ CB. For scaling purposes
we keep the dependence in ` explicit. In some statements we will also use the notation A� B to
indicate that there exists a (typically small) universal constant ε > 0 such that if A ≤ εB then
the conclusion of the statement holds.

Definition 2.2. Let δ, r > 0 and x ∈ Rn. We say that E is (δ, r)−Reifenberg flat in Br(x) if for
every Br′(y) ⊂ Br(x), there exists an hyperplane Hy,r′ containing y and such that

• we have
1

r′
dist(∂E ∩Br′(y), Hy,r′ ∩Br′(y)) ≤ δ,

where dist denotes the Hausdorff distance;
• one of the connected components of

{dist(·, Hy,r′) ≥ 2δr′} ∩Br′(y)

is included in E and the other in Ec.

We say that E is uniformly (δ, r)−Reifenberg flat if the above conditions hold for every x ∈ ∂E.

We now introduce several notions of excess and flatness that we will use. To do that we first
need to fix some geometric notation. For a given point x, radius r and direction ν ∈ Sn−1, we
define the cylinder

Cν(x, r) = x+ {y ∈ Rn : |y · ν| < r, |y − (y · ν)ν| < r}.
In the normalized situation where x = 0 and ν = en we simply set C(r) = Cen(0, r) and C = C(1).
We often write a point x ∈ Rn as x = (x′, xn) ∈ Rn−1×R and define ∇′ the gradient with respect
to the first (n − 1)−variables. We denote by B′r the disk of radius r in the plane xn = 0 so that
C = B′1 × (−1, 1). Given x ∈ Rn, r > 0 and ν ∈ Sn−1, we define the cylindrical excess in the
direction ν as

(2.2) Excν(E, x, r) =
1

rn−1

∫
∂E∩Cν(x,r)

|ν − νE |2

2
dHn−1.

As above, if x = 0 and ν = en we simply write Excn(E, r) = Excen(E, 0, r). Notice that
Exc(E, x, r) ≤ Excν(E, x, r). We define the cylindrical (L2) flatness as

(2.3) f2,ν(E, x, r) =
1

rn−1
min
h∈R

∫
Cν(x,r)

|(y − x) · ν − h|2

r2
dHn−1(y).

3. Density estimates

In this section we show density estimates for (Λ, r0)−minimizers. Let us first point out that
under the minimality condition (1.4) these have already been established, see [9]. It is well-known
that minimality conditions such as (1.2) need to be treated with extra-care since the error term
does not go to zero for fixed r as |E∆F | → 0. The standard proof of density estimates for quasi-
minimizers in the sense (1.2) goes through a monotonicity formula (see [13, Lemma 2]). Under the
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weaker condition (1.1), this monotonicity formula would lead to a logarithmically failing estimate
and we need to argue differently.

Proposition 3.1. There exists a universal ε > 0 such that if Λ < ε and E is a (Λ, r0)−minimizer
then for every x ∈ ∂E and every 0 < r ≤ r0

(3.1) min(|E ∩Br(x)|, |Br(x)\E|) & rn

and

(3.2) rn−1 . P (E,Br) . r
n−1.

Proof. We argue as in the proof of Proposition 6.6 in [4]. By translation and density we may
assume without loss of generality that x = 0 and 0 ∈ ∂∗E. We first prove (3.2). The upper bound
is easy. Using the quasi-minimality property (1.1) with E\Br we obtain

P (E,Br) . PΦ(E,Br) . Hn−1(∂Br ∩ E) + Λrn−1 . rn−1.

We thus turn our attention to the lower bound. Let θ ∈ (0, 1/2) be fixed and then η = η(θ) to be
chosen below. We claim that if

(3.3)
1

rn−1
P (E,Br) ≤ η

then there exists C > 0 such that

(3.4)
1

(θr)n−1
P (E,Bθr) ≤ θ

1

rn−1
P (E,Br) + CΛ.

Indeed, if (3.3) holds then by the relative isoperimetric inequality,

min

(
|E ∩Br|

rn
,
|Br\E|
rn

)
.

(
1

rn−1
P (E,Br)

) n
n−1

. η
1

n−1
1

rn−1
P (E,Br).

Assume first that |E ∩Br| ≤ |Br\E|. Choose then t ∈ (θr, 2θr) such that

Hn−1(E ∩ ∂Bt) ≤
1

θr

∫ 2θr

θr

Hn−1(E ∩ ∂Bs)ds

.
|E ∩Br|

θr
. θ−1η

1
n−1P (E,Br).

Testing the quasi-minimality property (1.1) with F = E\Bt we then get

P (E,Bt) . PΦ(E,Bt) . Hn−1(E ∩ ∂Bt) + Λtn−1 . θ−1η
1

n−1P (E,Br) + Λ(θr)n−1.

Since P (E,Bθr) ≤ P (E,Bt), we get

(3.5)
1

(θr)n−1
P (E,Bθr) ≤ C

(
λ−nη

1
n−1

1

rn−1
P (E,Br) + Λ

)
.

If instead |E ∩Br| ≥ |Br\E|, we argue exactly in the same way using Ec instead of E (and noting

that if E satisfies (1.1) then also Ec satisfies it). Choosing now η such that Cθ−nη
1

n−1 = θ, we
conclude the proof of (3.4). Assume now that

Λ ≤ η(1− θ)
C

where C is the constant appearing in (3.4). Then if (3.3) holds, by (3.4)

1

(θr)n−1
P (E,Bθr) ≤ λη + CΛ ≤ η,

and we can iterate to obtain

lim sup
k→∞

1

(θkr)n−1
P (E,Bθkr) ≤ η.

In particular if η < ωn−1, which we may assume since we took ε small, this contradicts limr→0
1

rn−1P (E,Br) =
ωn−1 (which follows from the hypothesis 0 ∈ ∂∗E) so that the lower bound in (3.2) is proven.
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We now prove (3.1). For this we will show that there is η′ such that if

(3.6) min(|E ∩Br|, |Br\E|) ≤ η′rn

then we reach a contradiction with (3.2). Indeed, assume that (3.6) holds. Arguing as above we
find t ∈ (θr, 2θr) such that

P (E,Bt) .
η′

θ
rn−1 ≤ Cθη′tn−1.

Taking η′ small enough we reach the desired contradiction.
�

4. Excess decay

The aim of this section is to prove the following result:

Proposition 4.1. There exists εdec > 0 such that if ε ∈ (0, εdec) and E is a (Λ, r0)−minimizer
with 0 ∈ ∂E and

Exc(E, r) + `r + Λ ≤ ε
then for r′ ∈ (0, r),

(4.1) Exc(E, r′) . ε.

The strategy follows the steps described in the introduction. Since most of the proof is identical
to the existing literature (see in particular [9]) we only point out the main differences.

4.1. Height bound. We start with the height bound. Without loss of generality, we may assume
that x = 0 and ν = en.

Proposition 4.2. [Height Bound] For every δ ∈ (0, 1/4) there exists εhb = εhb(δ) > 0 such that
if E is a (Λ, r0)−minimizer and

Excn(E, 2r) + `r < εhb,

then
sup {|xn| : x ∈ C(r) ∩ ∂E} ≤ δr,

and
|{x ∈ C(r) ∩ E : xn > δr}|+ |{x ∈ C(r) ∩ Ec : xn < −δr}| = 0.

Proof. The proof is exactly as in [5, Lemma 4.1]. The only difference is for the compactness
properties of quasi-minimizers. In our case this may be obtained as in [2, Proposition 1.4]. See
also [4, Lemma 7.2], where it is observed that the height bound is a direct consequence of the
density estimates. �

Remark 4.3. We stress that Proposition 4.2 in particular shows that if the excess is small at
every scale around a given point, then E is Reifenberg flat at that point.

4.2. Lipschitz approximation. The second ingredient is the fact that as long as the excess is
small inside a cylinder, the boundary of E can be approximated by a Lipschitz function.

Proposition 4.4. [Lipschitz approximation] For every δ ∈ (0, 1/4) there exists εlip = εlip(δ) > 0
and σ > 0 such that if E is a (Λ, r0)−minimizer with

Excn(E, 2r) + `r ≤ εlip,

then there exists u : Rn−1 → R such that, if

M = C(r) ∩ ∂E,

M0 =

{
y ∈M : sup

s∈(0,r)

Excn(E, y, s) ≤ σ

}
and Γ is the graph of u in B′r, then

(4.2) sup
B′r

|u| ≤ δr, Lip(u) ≤ 1, M0 ⊂M ∩ Γ,
Hn−1(M∆Γ)

rn−1
. Excn(E, 2r),
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and

(4.3)
1

rn−1

∫
B′r

|∇′u|2 . Excn(E, 2r).

Moreover, for all ϕ ∈ C1
c (B′r)

(4.4)
1

rn−1

∫
B′r

∇2Φ(0, en)(∇′u, 0) · (∇′ϕ, 0) . ‖∇′ϕ‖∞(Excn(E, 2r) +
√

Λ + `r).

Proof. Up to choosing εlip ≤ εhb, we can repeat Step one of Proposition 4.3 in [5] to show the
existence of a Lipschitz function u satisfying properties (4.2) and (4.3). Letting Φ0 = Φ(0, ·), to
prove (4.4) we show that

(4.5)
1

rn−1

∫
C(r)∩∂E

∇Φ0(νE) · (∇′ϕ, 0)(νE · en) dHn−1 . ‖∇′ϕ‖∞(
√

Λ + `r).

With this inequality at hand we may conclude by following verbatim the proof of [5, Proposition
4.3].

To get (4.5) we notice that by scaling we may assume that r = ‖∇′ϕ‖∞ = 1. Let t > 0 and
set ft(x) = x + tα(xn)ϕ(x′) where α ∈ C1

c ([−1, 1], [0, 1]) with α = 1 on [−1/2, 1/2] and |α′| < 3.
Then, up to choosing t small enough, we get that ft is a diffeomorphism of Rn and ft(E)∆E ⊂ C.
By the (Λ, r0)−minimality (1.1) of E, we get that

PΦ(E) ≤ PΦ(ft(E)) + Λ.

Using a Taylor expansion and the area formula as in [5, page 526], we find

PΦ(ft(E))− PΦ(E) ≤ −t
∫
C∩∂E

∇Φ0(νE)(∇′ϕ, 0)(νE · en) dHn−1 + C(`|t|+ t2).

Combining the last two inequalities we get∫
C∩∂E

∇Φ0(νE) · (∇′ϕ, 0)(νE · en) dHn−1 .
Λ

|t|
+ |t|+ `.

The proof of (4.5) is concluded by choosing t =
√

Λ.
�

4.3. Caccioppoli inequality. We now turn to the Cacciopoli inequality which allows to control
the excess by the flatness.

Proposition 4.5. [Caccioppoli inequality] There exists εca > 0 such that if

Excν(E, 4r) + Λ + `r ≤ εca

then (recall the definition (2.3) of the flatness)

(4.6) Excν(E, r) . f2,ν(E, 2r) + Λ + `r.

Proof. Denote Λ = Λ/r. The statement is then a direct consequence of [5, Lemma 4.4]. Indeed,
quasi-minimality is used only to get [5, (4.70)], which for us is automatically satisfied. �

4.4. Tilt Lemma. We now combine the previous results to prove the anticipated tilt lemma,
stating that if the cylindrical excess is small at a given scale then, up to a rotation it remains
small at smaller scales.

Lemma 4.6. [Tilt Lemma] For every θ ∈ (0, 1) small enough, there exists εtilt = εtilt(θ) > 0 and
Cθ > 0 such that if E is a (Λ, r0)−minimizer and

Excn(E, r) + Λ + `r ≤ εtilt,

then there exists ν ∈ Sn−1 such that

(4.7) Excν(E, θr) . θ2Excn(E, r) + CθΛ + `θr.
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Proof. We follow relatively closely the proof in [9, Section 25.2] (see also [5, Lemma 4.6]). By
scaling, we may assume that r = 1. Up to choosing εtilt smaller than εlip and εhb, we may apply
Lemmas 4.2 and 4.4. Define the (n−1)×(n−1) matrix A with components Ai,j = ∇2Φ(0, en)ei ·ej ,
for i, j = 1, . . . , n− 1. We recall the following simple result from elliptic regularity theory (see [5,
Lemma 4.7]). For every τ > 0, there exists εhar = εhar(τ) such that if u is such that for every
ϕ ∈ C1

c (B′1), ∫
B′1

|∇′u|2 ≤ 1 and

∫
B′1

(A∇′u) · ∇′ϕ . εhar‖∇′ϕ‖∞,

then there exists v such that for every ϕ ∈ C1
c (B′1)∫

B′1

|u− v|2 ≤ τ,
∫
B′1

|∇′v|2 ≤ 1 and

∫
B′1

(A∇′v) · ∇′ϕ = 0.

Let now τ > 0 be a small parameter to be chosen depending on θ and let η be another small
parameter to be fixed depending on τ (and thus ultimately on θ). Let C > 0 be a large (universal)
constant and set

(4.8) χ = C(Excn(E, 1) + η−1Λ + `).

Then, by setting u0 = χ−
1
2u we get from (4.3) and (4.4) that for any ϕ ∈ C1

c (D)∫
B′1

|∇′u0|2 ≤ 1 and∫
B′1

A∇′u0 · ∇′ϕ . ‖∇′ϕ‖∞
Excn(E, 1) +

√
Λ + `√

Excn(E, 1) + η−1Λ + `
. ‖∇′ϕ‖∞(Exc

1
2
n (E, 1) + η

1
2 + `

1
2 ).

Therefore, if η is chosen small enough so that

Exc
1
2
n (E, 1) + η

1
2 + `

1
2 � εhar,

We may apply the result quoted above to find a A−harmonic function v0 such that∫
B′1

|u0 − v0|2 ≤ τ,
∫
B′1

|∇′v0|2 ≤ 1.

Letting v = χ
1
2 v0, this is equivalent to

(4.9)

∫
B′1

|u− v|2 ≤ τχ,
∫
B′1

|∇′v|2 ≤ χ.

Consider w(z) = v(0) +∇′v(0) · z the tangent map in 0 to v. By standard elliptic regularity we
have for any θ < 1/2,

sup
B′θ

|v − w|2 . θ4

∫
B′1

|∇′v|2 . θ4χ.

We now choose τ = θn+3 and combine the last inequality together with (4.9) and triangle inequality
to obtain

(4.10)
1

θn+1

∫
B′θ

|u− w|2 .
( τ

θn+1
+ θ2

)
χ . θ2χ.

Finally, we set the vector ν to be the unit vector orthogonal to the graph of v at the origin i.e.

ν =
(−∇′v(0), 1)√
1 + |∇′v(0)|2

.

A key observation is that with this choice of the normal, the tilting is small,

(4.11) |ν − en|2 . |∇′v(0)|2 .
∫
B′1

|∇′v|2 . χ.
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Hence, since Cν(θ) ⊂ C(2θ), we get

Excν(E, θ) =
1

θn−1

∫
∂E∩Cν(θ)

|νE − ν|2

2
dHn−1

≤ 1

θn−1

∫
∂E∩C(2θ)

|νE − ν|2

2
dHn−1

.
1

θn−1

∫
∂E∩C(2θ)

|νE − en|2

2
dHn−1 +

1

θn−1
P (E,C(2θ))|ν − en|2

(3.2)&(4.11)

. Excn(E, 2θ) + χ

. θ−(n−1)Excn(E, 1) + χ.

Possibly further reducing the value of εtilt so that the right-hand side of the previous inequality
lies below εca, we can thus apply Proposition 4.5 to Excν(E, θ) and obtain (up to renaming θ)

Excν(E, θ) . f2,ν(E, 2θ) + Λ + `θ.

The proof is then concluded arguing exactly as in the proof of [5, (4.122)], or, in the isotropic
case ` = 0, as in [9, (25.22), page 343], using (4.2), (4.10) and (4.11) to obtain

(4.12) f2,ν(E, 2θ) . θ2χ,

which recalling the definition (4.8) of χ, immediately implies (4.7). �

We can finally conclude the proof of Proposition 4.1.

Proof of Proposition 4.1. We first translate the conclusion of Lemma 4.6 from the cylindrical ex-
cess to the spherical excess. We claim that for every θ ∈ (0, 1) small enough, there exists εit > 0
and Cθ > 0 such that if

(4.13) Exc(E, r) + Λ + `r ≤ εit,

then

(4.14) Exc(E, θr) ≤ C(θ2Exc(E, r) + `θr) + CθΛ.

Indeed, if (4.13) holds, up to a rotation we may assume that the infimum defining Exc(E, r) (see
(1.5)) is attained at en. Since C( 1√

2
r) ⊂ Br, this implies that Excn(E, 1√

2
r) . Exc(E, r) so that

we may apply Lemma 4.6 and obtain (4.14) (recall that Exc(E, θr) ≤ Excν(E, θr)).
Fix now θ such that Cθ ≤ 1

2 and let C̄ = 1+2Cθ. Finally choose εdec > 0 such that (C̄+1)εdec ≤ εit.
We claim that if ε ∈ (0, εdec) and

Exc(E, r) + Λ + `r ≤ ε,

then for every k ≥ 0

(4.15) Exc(E, θkr) ≤ C̄ε.

Indeed, by hypothesis it holds for k = 0. If it holds for k, then by the choice of parameters,

Exc(E, θkr) + Λ + `θkr ≤ (C̄ + 1)εdec ≤ εit

so that by (4.14)

Exc(E, θk+1r) ≤ C(θ2Exc(E, θkr) + `θkr) + CθΛ ≤
C̄

2
ε+

1

2
ε+ Cθε ≤ C̄ε,

proving (4.15). Finally if r′ ∈ (θk+1r, θkr)

Exc(E, r′) .
1

θn−1
Exc(E, θkr),

which concludes the proof of (4.1).
�
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5. Proof of the main results

We begin by proving the ε−regularity result in Theorem 1.3.

Proof of Theorem 1.3. For fixed δ > 0, let ε� min(εdec, εhb(δ)). Since for x ∈ B r
2
,

Exc
(
E, x,

r

2

)
. Exc(E, r),

if Exc(E, r) is small enough, we can apply Proposition 4.1 at every x ∈ B r
2

to get that

Exc(E, x, r′) . ε ∀x ∈ B r
2
, and r′ ≤ r

2
.

By the height bound Proposition 4.2 (see also Remark 4.3), this proves that E is (δ, r2 )−Reifenberg
flat in B r

2
. �

We now prove our main result.

Proof of Theorem 1.1. The proof follows a classical scheme, see [9, Theorem 28.1] or [4, Theorem
1.1]. Since the statement is local, we may assume without loss of generality that E is bounded.
For ε� 1 we let

Σε(E) =

{
x ∈ ∂E : lim sup

r→0
Exc(E, x, r) > ε

}
.

By Theorem 1.3, we know that if ε is small enough then ∂E\Σε(E) is δ−Reifenberg flat and
it is thus enough to prove that Hn−3(Σε(E)) = 0 if Λ is small enough. For this we argue by
contradiction and assume that there exists a sequence Ek of (Λk, r0)−minimizers with Λk → 0
and Hn−3(Σε(Ek)) > 0. Denoting by Hn−3

∞ the infinity Hausdorff pre-measure, by [9, Lemma
28.14] there exists a sequence xk ∈ ∂Ek and radii rk → 0 such that

lim sup
k→∞

Hn−3
∞ (Σε(Ek) ∩Brk(xk))

rn−3
k

& 1.

Letting Fk = r−1
k (Ek − xk), we have that Fk are again (Λk, r0)−minimizers with

(5.1) lim sup
k→∞

Hn−3
∞ (Σε(Fk) ∩B1) & 1.

Up to a subsequence, xk → x∞. Letting Φ∞(ν) = Φ(x∞, ν), by the perimeter bound (3.2), up
to a further subsequence, Fk → F . By simple comparison arguments it is then not difficult to
prove that F is a minimizer of PΦ∞ with P (Fk, Br(x)) → P (F,Br(x)) for every Br(x) (see [9,
Theorem 21.14] or [8]). Let Σ(F ) = {x ∈ ∂F : lim supr→0 Exc(F, x, r) > 0} be the singular set of
F . By the regularity theory for minimizers of uniformly elliptic and regular anisotropic perimeter
Hn−3(Σ(F )) = 0, see [12] (in the isotropic case this may be improved to Hs(Σ(F )) = 0 for every
s > n − 8, see [9, Theorem 28.1]). Thus, by definition of the Hausdorff measure, for every η > 0
there exists an open set Ωη such that

Σ(F ) ⊂ Ωη and Hn−3
∞ (Ωη) ≤ η.

We claim that if k is large enough then Σε(Fk) ⊂ Ωη which implies Hn−3
∞ (Σε(Fk)) ≤ η in con-

tradiction with (5.1). Indeed, otherwise there would exist a sequence yk ∈ Σε(Fk) with yk → y
and y /∈ Σ(F ). By the perimeter convergence and the lower bound in (3.2) we find that y ∈ ∂F .
Therefore, by classical ε−regularity theory, for every ε′ � 1, there exists r > 0 such that

Exc(F, y, r) ≤ ε′.
Thanks to the perimeter convergence, we also have convergence of the excess (see for instance [9,
Proposition 22.6]) and thus for k large enough,

Exc(Fk, yk, r) ≤ Exc(F, y, r) + ε′ ≤ 2ε′.

If we choose ε′ � ε, by Proposition 4.1 on the excess decay, we find that yk /∈ Σε(Fk) which is a
contradiction. �

We finally prove Corollary 1.4.
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Proof of Corollary 1.4. Given δ, let ε = ε(δ) be given by Theorem 1.3 and set Λ̄ = 1
2ε. Since E is

compact and smooth at each point x ∈ ∂E, limr→0 Exc(E, x, r) = 0. Therefore, for every ε′ � ε,
we can find r > 0 and points xi ∈ ∂E such that for all i,

Exc(E, xi, 4r) ≤
ε′

2
and ∂E ⊂ ∪iB r

4
(xi).

If now Ek is a sequence of (Λk, r0)−minimizers converging in L1 to E, by the uniform density
bounds (3.1) and (3.2) of Proposition 3.1, we obtain the Hausdorff convergence of ∂Ek to ∂E. In
particular, for k large enough we get that

∂Ek ⊂ ∪iB r
2
(xi).

Moreover, if k is large enough we have Λk ≤ 2Λ̄ ≤ ε, and arguing as above using perimeter
convergence we can find points xi,k ∈ ∂Ek ∩B r

2
(xi) such that

Exc(Ek, xi,k, 2r) . Exc(Ek, xi, 4r) ≤ ε′.
By choosing ε′ small enough, we may thus apply Theorem 1.3 at every xi,k to obtain that ∂Ek is
(δ, r)−Reifenberg flat in ∪iBr(xi,k) ⊃ ∂E. �
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