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Abstract We survey a number of results obtained in [9, 8, 7] that provide existence
of solutions for a wide class of hyperbolic obstacle-type problems, including non
local operators as well as vector-valued maps. The main results are obtained through
a variational scheme inspired to De Giorgi’s minimizing movements. As a first ap-
plication, a compactness result is derived for energy concentration sets in hyperbolic
Ginzburg-Landau models for cosmology. Further applications are given for the de-
scription of the dynamics of a string interacting with a rigid substrate through an
adhesive layer.
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1 Introduction

Obstacle problems in the elliptic and parabolic setting have attracted a lot of attention
in the last decade, including the case of non-local operators (see for instance [31, 11,
10, 25, 4] and references therein). In the hyperbolic setting, though, there are still
few works on this subject. In this survey note we present a model for the hyperbolic
obstacle problem as studied in the series of papers [9, 8, 7]. The problem can be
formulated as follows: given an open bounded domain Ω ⊂ R𝑑 with Lipschitz
boundary and a function 𝑔 ∈ 𝐶0 (Ω̄), 𝑔 < 0 on 𝜕Ω, consider the system
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𝑢𝑡𝑡 + (−Δ)𝑠𝑢 +𝑊 ′ (𝑢) ≥ 0 in (0, 𝑇) ×Ω

𝑢(𝑡, ·) ≥ 𝑔 in [0, 𝑇] ×Ω

(𝑢𝑡𝑡 + (−Δ)𝑠𝑢 +𝑊 ′ (𝑢)) (𝑢 − 𝑔) = 0 in (0, 𝑇) ×Ω

𝑢(𝑡, 𝑥) = 0 in [0, 𝑇] × (R𝑑 \Ω)
𝑢(0, 𝑥) = 𝑢0 (𝑥) in Ω

𝑢𝑡 (0, 𝑥) = 𝑣0 (𝑥) in Ω

(1)

under the following assumptions:

(i) 𝑢0 ∈ �̃�𝑠 (Ω), 𝑣0 ∈ 𝐿2 (Ω,R𝑚), 𝑢0 ≥ 𝑔 a.e. in Ω, where

�̃�𝑠 (Ω) :=
{
𝑢 ∈ 𝐿2 (R𝑑; R𝑚) s.t.∫
R𝑑

(1 + |𝜉 |2𝑠) |F 𝑢(𝜉) |2 𝑑𝜉 < +∞, 𝑢 = 0 a.e. in R𝑑 \Ω
}
,

(2)

with F the Fourier transform (see [15, 21] for more details about the introduction
to fractional Sobolev spaces);

(ii) 𝑊 is a continuous potential with Lipschitz continuous derivative;
(iii) for 𝑠 > 0 the operator (−Δ)𝑠 stands for the fractional 𝑠-Laplacian.

We refer the reader to [8] for main terminology and notations. Concerning problem
(1), we investigate both the obstacle-free case and the case where an obstacle is
present (in this case, we consider only the scalar case 𝑚 = 1 in the system (1)). In
the obstacle case, recall the work of Schatzman and collaborators (see e.g. [28, 29,
30, 26]) where the authors provided an existence and uniqueness result in a suitable
setting for problem (1) (the wave equation in the 1-dimensional case) by making use
of the validity of the representation formula for solutions of the free wave equation.
The approach allows to prescribe how the solution behaves at contact times (e.g.
when a string bounces elastically at the contact point). In another direction, by using
a time semidiscrete method, the 1-dimensional obstacle problem for the linear wave
equation has been treated first in [20] and then adapted in [16]. More recently, similar
time semidiscrete methods have also been used to study hyperbolic free boundary
problems (see [1]). By following the approach in [20], in [9] a variational time semi-
discrete scheme inspired to De Giorgi’s minimizing movements is implemented,
yielding uniform energy estimates for the approximate solutions of (1) also in the
presence of an obstacle, first in the linear case, i.e. when 𝑊 = 0, and subsequently
generalized in [8] to the semilinear case 𝑊 ≠ 0. Those energy estimates have been
proved to be valid also when dealing with non local operators like the fractional
Laplacian, and for vector-valued 𝑢, yielding existence results to problem (1), at least
in the obstacle-free case, also in this more general non local, vector-valued setting.

As a first application we show some compactness results for energy concentration
sets in singular limits of hyperbolic Ginzburg-Landau equations, which describe
topological defects in cosmological models. Second, we show how the results ob-
tained in [8] are employed in [7] to study the dynamics of a string interacting with
a rigid substrate through an adhesive layer, extending the results in [13, 14]. In
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addition, in a paper in preparation we will also use the results obtained in [8] to
study existence results for a class of hyperbolic equations in moving domains. The
variational scheme used in [20, 9, 8] relies on De Giorgi’s minimizing movements
[3] and has been used in many different contexts. In this context it is also known as
Morse semi-flow or Rothe’s method [27].

The organization of this note is as follows: in Section 2, we introduce the vari-
ational scheme and present the existence results for the obstacle-free case as well
as its application to singular limits of the hyperbolic Ginzburg-Landau equation. In
Section 3, we present the existence results in case the obstacle is present, and finally
in Section 4 we discuss the application to adhesive phenomena.

2 Weak solutions for the fractional semilinear wave equations
(obstacle-free case)

In this section, we shall introduce the time semidiscrete method to the obstacle-free
case, energy estimates, and then we present existence results obtained in [9, 8], which
can be also seen as the first step to study the obstacle case. Let Ω ⊂ R𝑑 be an open
bounded domain with Lipschitz boundary. For 𝑢 = 𝑢(𝑡, 𝑥) : (0, 𝑇) × R𝑑 → R𝑚, let
us consider the system

𝑢𝑡𝑡 + (−Δ)𝑠𝑢 + ∇𝑢𝑊 (𝑢) = 0 in (0, 𝑇) ×Ω

𝑢(𝑡, 𝑥) = 0 in [0, 𝑇] × (R𝑑 \Ω)
𝑢(0, 𝑥) = 𝑢0 (𝑥) in Ω

𝑢𝑡 (0, 𝑥) = 𝑣0 (𝑥) in Ω

(3)

with initial data 𝑢0 ∈ �̃�𝑠 (Ω) and 𝑣0 ∈ 𝐿2 (Ω) := 𝐿2 (Ω; R𝑚) (we conventionally
intend that 𝑣0 = 0 in R𝑑 \ Ω), and a non-negative potential 𝑊 ∈ 𝐶1 (R𝑚; R) having
Lipschitz continuous derivative with Lipschitz constant 𝐾 > 0, i.e.,

|∇𝑊 (𝑥) − ∇𝑊 (𝑦) | ≤ 𝐾 |𝑥 − 𝑦 | for any 𝑥, 𝑦 ∈ R𝑚. (4)

Notice that since we consider also non-local operators, the boundary condition is
imposed on the whole complement of Ω.

We define a weak solution of (3) as follows:

Definition 1 Let 𝑇 > 0. We say 𝑢 = 𝑢(𝑡, 𝑥) is a weak solution of (3) in (0, 𝑇) if

1. 𝑢 ∈ 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω)) ∩𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)) and 𝑢𝑡𝑡 ∈ 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)),
2. for all 𝜑 ∈ 𝐿1 (0, 𝑇 ; �̃�𝑠 (Ω))∫ 𝑇

0
⟨𝑢𝑡𝑡 (𝑡), 𝜑(𝑡)⟩𝑑𝑡 +

∫ 𝑇

0
[𝑢(𝑡), 𝜑(𝑡)]𝑠 𝑑𝑡 +

∫ 𝑇

0

∫
Ω

∇𝑢𝑊 (𝑢(𝑡)) · 𝜑(𝑡) 𝑑𝑥𝑑𝑡 = 0

(5)
with
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𝑢(0, 𝑥) = 𝑢0 and 𝑢𝑡 (0, 𝑥) = 𝑣0. (6)

The energy of 𝑢 is defined as

𝐸 (𝑢(𝑡)) = 1
2
| |𝑢𝑡 (𝑡) | |2𝐿2 (Ω) +

1
2
[𝑢(𝑡)]2

𝑠 + ||𝑊 (𝑢(𝑡)) | |𝐿1 (Ω) , 𝑡 ∈ [0, 𝑇] .

The main Theorem of this section is the following:
Theorem 1
(i) There exists a weak solution of the fractional semilinear wave equation (3) such

that it satisfies the energy inequality:

𝐸 (𝑢(𝑡)) ≤ 𝐸 (𝑢(0)) for any 𝑡 ∈ [0, 𝑇] . (7)

(ii) Assume 𝑢0 ∈ �̃�2𝑠 (Ω) and 𝑣0 ∈ �̃�𝑠 (Ω). Then, there exists a solution 𝑢 of equation
(3) such that 𝑢 ∈ 𝑊1,∞ (0, 𝑇 ; �̃�𝑠 (Ω)), 𝑢𝑡 ∈ 𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)). Moreover,

𝐸 (𝑢(𝑡)) = 𝐸 (𝑢(0)) for any 𝑡 ∈ [0, 𝑇], (8)

i.e. the energy of 𝑢 is conserved during the evolution.
(iii) The equation (3) has unique solution in the class:

𝑋 = { 𝑢 | u is a weak solution of (3), 𝑢𝑡 ∈ 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω))} in the sense that if
𝑣, 𝑤 ∈ 𝑋 , then for each 𝑡 ∈ [0, 𝑇]

𝑣(𝑡) = 𝑤(𝑡) in �̃�𝑠 (Ω).

In particular the solution found in point (𝑖𝑖), since it belongs to 𝑋 , it is unique.
The solutions in Theorem 1 are constructed by the following scheme.

2.1 Approximating scheme

For 𝑛 ∈ N, set 𝜏𝑛 = 𝑇/𝑛 and define 𝑡𝑛
𝑖
= 𝑖𝜏𝑛, 0 ≤ 𝑖 ≤ 𝑛. Let 𝑢𝑛−1 = 𝑢0 − 𝜏𝑛𝑣0, 𝑢𝑛0 = 𝑢0

and for every 𝑖 ≥ 1 let

𝐽𝑛𝑖 (𝑢) =
[∫

Ω

|𝑢 − 2𝑢𝑛
𝑖−1 + 𝑢

𝑛
𝑖−2 |

2

2𝜏2
𝑛

𝑑𝑥 + 1
2
[𝑢]2

𝑠 +
∫
Ω

𝑊 (𝑢)𝑑𝑥
]
,

𝑢𝑛𝑖 ∈ arg min
𝑢∈�̃�𝑠 (Ω)

𝐽𝑛𝑖 (𝑢)
(9)

By using the direct method of the calculus of variations, each 𝐽𝑛
𝑖

admits a minimizer
𝑢𝑛
𝑖

in �̃�𝑠 (Ω) (the uniqueness of minimizers is not guaranteed in the nonlinear case).
The Euler’s equation of 𝑢𝑛

𝑖
:∫

Ω

(
𝑢𝑛
𝑖
− 2𝑢𝑛

𝑖−1 + 𝑢
𝑛
𝑖−2

𝜏2
𝑛

)
· 𝜑 𝑑𝑥 + [𝑢𝑛𝑖 , 𝜑]𝑠 +

∫
Ω

∇𝑢𝑊 (𝑢𝑛𝑖 ) · 𝜑𝑑𝑥 = 0 (10)
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for every 𝜑 ∈ �̃�𝑠 (Ω). Then, we define the piecewise constant and piecewise linear
interpolations over [−𝜏𝑛, 𝑇] as follows:

• piecewise constant interpolant

�̄�𝑛 (𝑡, 𝑥) =
{
𝑢𝑛−1 (𝑥) 𝑡 = −𝜏𝑛
𝑢𝑛𝑖 (𝑥) 𝑡 ∈ (𝑡𝑛𝑖−1, 𝑡

𝑛
𝑖 ],

(11)

• piecewise linear interpolant

𝑢𝑛 (𝑡, 𝑥) =

𝑢𝑛−1 (𝑥) 𝑡 = −𝜏𝑛
𝑡 − 𝑡𝑛

𝑖−1
𝜏𝑛

𝑢𝑛𝑖 (𝑥) +
𝑡𝑛
𝑖
− 𝑡
𝜏𝑛

𝑢𝑛𝑖−1 (𝑥) 𝑡 ∈ (𝑡𝑛𝑖−1, 𝑡
𝑛
𝑖 ] .

(12)

The strategy in proving Theorem 1 is to exploit the Euler’s equation of 𝑢𝑛
𝑖

to provide
an energy estimates on 𝑢𝑛

𝑖
, after that passing to the limit as 𝑛 → ∞ in the Euler’s

equation and prove that 𝑢𝑛 and �̄�𝑛 converge to a weak solution of (3) (see [8, Section
3] for more details about the scheme). We have the following energy estimate ([8,
Proposition 4]):

Proposition 1 (Key estimate)
The approximate solutions �̄�𝑛 and 𝑢𝑛 satisfy

1
2


𝑢𝑛𝑡 (𝑡)

2

𝐿2 (Ω) +
1
2
[�̄�𝑛 (𝑡)]2

𝑠 + ||𝑊 (�̄�𝑛 (𝑡)) | |𝐿1 (Ω) ≤ 𝐸 (𝑢(0)) + 𝐶𝜏𝑛

for all 𝑡 ∈ [0, 𝑇], with 𝐶 = 𝐶 (𝐸 (𝑢(0)), 𝐾, 𝑇) a constant independent of 𝑛.

Then, we can derive compactness results of 𝑢𝑛, �̄�𝑛,𝑊 (𝑢𝑛),𝑊 (�̄�𝑛), and ∇𝑢𝑊 (�̄�𝑛).

Proposition 2 (Convergence of 𝑢𝑛 and 𝑣𝑛)
There exist a subsequence of steps 𝜏𝑛 → 0 and a function 𝑢 ∈ 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω)) ∩

𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)), with 𝑢𝑡𝑡 ∈ 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)), such that

𝑢𝑛 → 𝑢 in 𝐶0 ( [0, 𝑇]; 𝐿2 (Ω)), 𝑢𝑛𝑡 ⇀
∗ 𝑢𝑡 in 𝐿∞ (0, 𝑇 ; 𝐿2 (Ω)),

𝑢𝑛 (𝑡) ⇀ 𝑢(𝑡) in �̃�𝑠 (Ω) for any 𝑡 ∈ [0, 𝑇], 𝑣𝑛 → 𝑢𝑡 in 𝐶0 ( [0, 𝑇];𝐻−𝑠 (Ω)),
𝑣𝑛𝑡 ⇀

∗ 𝑢𝑡𝑡 in 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)).

Proposition 3 (Convergence of �̄�𝑛,𝑊 (�̄�𝑛), and ∇𝑢𝑊 (�̄�𝑛))
There exist a subsequence of steps 𝜏𝑛 → 0 and a function 𝑢 ∈ 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω)) ∩

𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)), with 𝑢𝑡𝑡 ∈ 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)), such that

�̄�𝑛
∗
⇀ 𝑢 in 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω)),

�̄�𝑛 (𝑡) ⇀ 𝑢(𝑡) in �̃�𝑠 (Ω) for any 𝑡 ∈ [0, 𝑇],
𝑊 (�̄�𝑛) → 𝑊 (𝑢) in 𝐶0 ( [0, 𝑇]; 𝐿1 (Ω)),

∇𝑢𝑊 (�̄�𝑛) ∗
⇀ ∇𝑢𝑊 (𝑢) in 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)).
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Then, by passing to the limit in (10) we obtain Theorem 1. To see the conserva-
tive property, we need to prove that if the initial data are more regular, then the
limiting solutions also has higher regularity, which in turn allows to obtain energy
conservation (see [8, Proposition 10]).

2.2 Singular limits of hyperbolic Ginzburg-Landau equations

In this section, we focus only on the cases 𝑚 = 1, 𝑚 = 2, we consider the hyperbolic
Ginzburg-Landau equations:

𝜀2
(
𝜕2𝑢𝜀

𝜕𝑡2
− Δ𝑢𝜀

)
+ ∇𝑢𝑊 (𝑢𝜀) = 0 in (0, 𝑇) ×Ω,

𝑢𝜀 (0, 𝑥) = 𝑢0
𝜀 (𝑥) in Ω,

𝑢𝜀𝑡 (0, 𝑥) = 𝑣0
𝜀 (𝑥) in Ω,

(13)

where 𝜀 > 0 is a small parameter, Ω is a bounded domain in R𝑑 , for functions

𝑢𝜀 : (0, 𝑇) ×Ω → R𝑚, (14)

𝑊 is a non-convex balanced double-well potential of class 𝐶2 and we assume that
the potential is given by

𝑊 (𝑢) = (1 − |𝑢 |2)2

1 + |𝑢 |2
. (15)

Under natural bounds on initial energy, we have the following compactness results
on the interfaces (𝑚 = 1) and the vorticity (𝑚 = 2), which are so-called topological
defects (for the relevance of topological defects to cosmology, we refer the reader to
[24, 5, 6, 17, 22]).

Proposition 4 Let (𝑢𝜀)0<𝜀<1 be a sequence of solutions of (13) constructed by the
approximating scheme in Section 2 for each 0 < 𝜀 < 1 fixed such that 𝐸 (𝑢𝜀 (0) )

𝑘𝜀
≤ 𝐶

where 𝐶 is a constant independent of 𝜀, 𝑘 𝜀 = 1
𝜀

for 𝑚 = 1 and 𝑘 𝜀 = | log 𝜀 | for
𝑚 = 2. Then, up to a subsequence 𝜀𝑛 → 0,

(i) in case 𝑚 = 1,
𝑢𝜀𝑛 → 𝑢 in 𝐿1 ((0, 𝑇) ×Ω),

where 𝑢(𝑡, 𝑥) ∈ {−1, 1} for a.e. (𝑡, 𝑥) ∈ (0, 𝑇) ×Ω, and 𝑢 ∈ 𝐵𝑉 ((0, 𝑇) ×Ω) (see
[23]),

(ii) in case 𝑚 = 2,
𝐽𝑢𝜀𝑛 ⇀ 𝐽 in [𝐶0,1 ((0, 𝑇) ×Ω)]∗,

where 𝐽𝑢𝜀 = 𝑑𝑢1
𝜀 ∧ 𝑑𝑢2

𝜀 is the distributional Jacobian defined on (0, 𝑇) ×Ω (see
for instance [18, 2]), and 1

𝜋
𝐽 is a 𝑑 −1 dimensional integral current in (0, 𝑇) ×Ω

(see [19]).
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3 Weak solutions for the obstacle problem for fractional
semilinear wave equations

In this section, we consider the obstacle case given by (1) with 𝑚 = 1. We define a
weak solution of (1) as follows:

Definition 2 Let 𝑇 > 0. We say 𝑢 = 𝑢(𝑡, 𝑥) is a weak solution of (1) in (0, 𝑇) if

1. 𝑢 ∈ 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω)) ∩𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)) and 𝑢(𝑡, 𝑥) ≥ 𝑔(𝑥) for a.e. (𝑡, 𝑥) ∈
(0, 𝑇) ×Ω;

2. there exist weak left and right derivatives 𝑢±𝑡 on [0, 𝑇] (with appropriate modifi-
cations at endpoints);

3. for all 𝜑 ∈ 𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)) ∩ 𝐿1 (0, 𝑇 ; �̃�𝑠 (Ω)) with 𝜑 ≥ 0, spt 𝜑 ⊂ [0, 𝑇), we
have

−
∫ 𝑇

0

∫
Ω

𝑢𝑡𝜑𝑡 𝑑𝑥𝑑𝑡 +
∫ 𝑇

0
[𝑢, 𝜑]𝑠 𝑑𝑡 +

∫ 𝑇

0

∫
Ω

𝑊 ′ (𝑢)𝜑𝑑𝑥𝑑𝑡 −
∫
Ω

𝑣0 𝜑(0) 𝑑𝑥 ≥ 0

4. the initial conditions are satisfied in the following sense

𝑢(0, ·) = 𝑢0,

∫
Ω

(𝑢+𝑡 (0) − 𝑣0) (𝜑 − 𝑢0) 𝑑𝑥 ≥ 0 ∀𝜑 ∈ �̃�𝑠 (Ω), 𝜑 ≥ 𝑔.

By a slightly modification of the approximating scheme in the Section 2.1 and using
the same strategy, we can prove the following Theorem:

Theorem 2 There exists a weak solution 𝑢 of the obstacle problem for the fractional
semilinear wave equation (1), and 𝑢 satisfies

1
2
| |𝑢±𝑡 (𝑡) | |2𝐿2 (Ω) +

1
2
[𝑢(𝑡)]2

𝑠 + ||𝑊 (𝑢(𝑡)) | |𝐿1 (Ω)

≤ 1
2
| |𝑣0 | |2𝐿2 (Ω) +

1
2
[𝑢0]2

𝑠 + ||𝑊 (𝑢0) | |𝐿1 (Ω)

(16)

for a.e. 𝑡 ∈ [0, 𝑇].

3.1 Approximating scheme

For 𝑛 ∈ N, set 𝜏𝑛 = 𝑇/𝑛 and define 𝑡𝑛
𝑖
= 𝑖𝜏𝑛, 0 ≤ 𝑖 ≤ 𝑛. Let 𝑢𝑛−1 = 𝑢0 − 𝜏𝑛𝑣0, 𝑢𝑛0 = 𝑢0

and define
𝐾𝑔 := {𝑢 ∈ �̃�𝑠 (Ω) | 𝑢 ≥ 𝑔 a.e. in Ω}.

For every 0 < 𝑖 ≤ 𝑛, given 𝑢𝑛
𝑖−2 and 𝑢𝑛

𝑖−1, we define 𝑢𝑛
𝑖

as

𝑢𝑛𝑖 ∈ arg min
𝑢∈𝐾𝑔

𝐽𝑛𝑖 (𝑢),
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where 𝐽𝑛
𝑖

is defined as in (9). Then, a variational characterization of each minimizer
𝑢𝑛
𝑖

can be provided as follows: take 𝜑 ∈ 𝐾𝑔 and consider the function (1−𝜀)𝑢𝑛
𝑖
+𝜀𝜑,

which belongs to 𝐾𝑔 for 𝜀 small enough. By the minimality of 𝑢𝑛
𝑖
, we have

𝑑

𝑑𝜀
𝐽𝑛𝑖 (𝑢𝑛𝑖 + 𝜀(𝜑 − 𝑢𝑛𝑖 )) |𝜀=0 ≥ 0,

which is equivalent to∫
Ω

𝑢𝑛
𝑖
− 2𝑢𝑛

𝑖−1 + 𝑢
𝑛
𝑖−2

𝜏2
𝑛

(𝜑−𝑢𝑛𝑖 ) 𝑑𝑥 + [𝑢𝑛𝑖 , 𝜑−𝑢𝑛𝑖 ]𝑠 +
∫
Ω

𝑊 ′ (𝑢𝑛𝑖 ) (𝜑−𝑢𝑛𝑖 )𝑑𝑥 ≥ 0 (17)

for all 𝜑 ∈ 𝐾𝑔. By choosing the test function 𝜑 = 𝑢𝑛
𝑖−1 in (17), and replicating the

proof of Proposition 1, we obtain the same energy estimate

1
2


𝑢𝑛𝑡 (𝑡)

2

𝐿2 (Ω) +
1
2
[�̄�𝑛 (𝑡)]2

𝑠 + ||𝑊 (�̄�𝑛 (𝑡)) | |𝐿1 (Ω) ≤ 𝐸 (𝑢(0)) + 𝐶𝜏𝑛

for all 𝑡 ∈ [0, 𝑇], with 𝐶 = 𝐶 (𝐸 (𝑢(0)), 𝐾, 𝑇) a constant independent of 𝑛 (we refer
the reader to [8, Section 4] for more details).

4 Nonlinear waves in adhesive phenomena

In this last section, we shall present results obtained in [7], where the first two
authors investigate the dynamic of a string interacting with a rigid substrate through
an adhesive layer, which was initially studied in [13, 14] in 1-dimensional setting. We
consider the system (3), where the potential𝑊 responds for the energetic contribution
of the glue layer having the following behavior:

(i) In the case ∇𝑢𝑊 discontinuously drops to zero:

𝑊 (𝑦) =
{
|𝑦 |2 if 𝑦 ∈ B(0, 1)
1 if 𝑦 ∉ B(0, 1)

(4.18)

where B(0, 1) = { 𝑦 ∈ R𝑚 | |𝑦 | < 1 }, B(0, 1) = { 𝑦 ∈ R𝑚 | |𝑦 | ≤ 1 }, and we
define

∇𝑊 (𝑦) =
{

2𝑦 if 𝑦 ∈ B(0, 1)
0 if 𝑦 ∉ B(0, 1)

(4.19)

In this case, we define the weak solutions as follows:

Definition 3 (Weak solution and energy for the discontinuous case)
Let 𝑇 > 0. We say 𝑢 = 𝑢(𝑡, 𝑥) is a weak solution of (3) in (0, 𝑇) if

a. 𝑢 ∈ 𝐿∞ (0, 𝑇 ; �̃�𝑠 (Ω)) ∩𝑊1,∞ (0, 𝑇 ; 𝐿2 (Ω)) and 𝑢𝑡𝑡 ∈ 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)),
b. ∇𝑢𝑊 (𝑢) ∈ 𝐿∞ (0, 𝑇 ;𝐻−𝑠 (Ω)),
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c. for all 𝜑 ∈ 𝐿1 (0, 𝑇 ; �̃�𝑠 (Ω)),∫ 𝑇

0
⟨𝑢𝑡𝑡 (𝑡), 𝜑(𝑡)⟩𝑑𝑡 +

∫ 𝑇

0
[𝑢(𝑡), 𝜑(𝑡)]𝑠 𝑑𝑡 +

∫ 𝑇

0

∫
Ω

∇𝑢𝑊 (𝑢(𝑡))𝜑(𝑡) 𝑑𝑥𝑑𝑡 = 0

(4.20)
with

𝑢(0, 𝑥) = 𝑢0 and 𝑢𝑡 (0, 𝑥) = 𝑣0. (4.21)

The energy of 𝑢 is defined as

𝐸 (𝑢(𝑡)) = 1
2
| |𝑢𝑡 (𝑡) | |2𝐿2 (Ω) +

1
2
[𝑢(𝑡)]2

𝑠 + ||𝑊 (𝑢(𝑡)) | |𝐿1 (Ω) for 𝑡 ∈ [0, 𝑇] .

we prove the existence of solutions under small conditions on the initial data
combined with 2𝑠 > 𝑑.

Theorem 4.3 Consider 2𝑠 > 𝑑,𝑊 , ∇𝑢𝑊 as defined in (4.18), (4.19) respectively
and assume that

| |𝑢0 | |�̃�𝑠 (Ω) ≤ 𝜀1, | |𝑣0 | |𝐿2 (Ω) ≤ 𝜀2 (4.22)

for sufficiently small 𝜀1, 𝜀2. Then, there exists a weak solution of problem (3) in
the sense of Definition 3 with

|𝑢(𝑥, 𝑡) | < 1 for all (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω (4.23)

and
𝐸 (𝑢(𝑡)) ≤ 𝐸 (𝑢(0)) for any 𝑡 ∈ [0, 𝑇]. (4.24)

(ii) In the case the glue layer, namely ∇𝑢𝑊 , continuously decays to zero, we still
define weak solutions as in Definition 1. We have the following Theorem:

Theorem 4.4 Let 𝑊 ∈ 𝐶1 (R𝑚), and 𝑊 be non-negative. Assume there exists
𝐾 > 0 such that 0 ≤ 𝑊 (𝑦) ≤ 𝐾 and 0 ≤ |∇𝑊 (𝑦) | ≤ 𝐾 for all 𝑦 ∈ R𝑚, with
∇𝑊 uniformly continuous. Then, there exists a weak solution of (3) satisfying the
energy inequality

𝐸 (𝑢(𝑡)) ≤ 𝐸 (𝑢(0)) for any 𝑡 ∈ [0, 𝑇] . (4.25)
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