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Abstract

This paper is concerned with the diffuse interface Ohta-Kawasaki energy in three
space dimensions, in a periodic setting, in the parameter regime corresponding to
the onset of non-trivial minimizers. We identify the scaling in which a sharp transition
from asymptotically trivial to non-trivial minimizers takes place as the small parameter
characterizing the width of the interfaces between the two phases goes to zero, while the
volume fraction of the minority phases vanishes at an appropriate rate. The value of the
threshold is shown to be related to the optimal binding energy solution of Gamow’s
liquid drop model of the atomic nucleus. Beyond the threshold the average volume
fraction of the minority phase is demonstrated to grow linearly with the distance to
the threshold. In addition to these results, we establish a number of properties of the
minimizers of the sharp interface screened Ohta-Kawasaki energy in the considered
parameter regime. We also establish rather tight upper and lower bounds on the value
of the transition threshold.
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4 Diffuse interface energy Eε 20

1 Introduction and main results

The Ohta-Kawasaki energy is a prototypical energy functional in the studies of spatially
modulated phases that appear as a result of the competition of short-range attractive and
long-range repulsive forces in physical systems of very different nature. Although it was
originally introduced in the context of microphase separation in diblock copolymer melts
[26], Ohta-Kawasaki energy is relevant to a wide range of both soft and hard condensed
matter systems (for a discussion of the specific physical systems see, e.g., [24] and references
therein), as well as to dense nuclear matter at the other extreme of energy and spatial scales
[16,20]. From the mathematical point of view, Ohta-Kawasaki energy functional, together
with the closely related Thomas-Fermi-Dirac-von Weizsäcker energy [14, 17, 18, 31], serve
as a paradigm for energy-driven pattern forming systems with competing interactions [4],
which is why the associated variational problem has received an increasing amount of
attention in recent years [3, 5, 6, 12,13,19,25,30].

In the macroscopic setting, one considers the Ohta-Kawasaki energy functional defined
on a sufficiently large box with periodic boundary conditions, i.e., for u ∈ H1(T`) one sets

Eε(u) :=

∫
T`

(
ε2

2
|∇u|2 +

1

4
(1− u2)2 +

1

2
(u− ūε)(−∆)−1(u− ūε)

)
dx, (1.1)

where T` is the flat d-dimensional torus with sidelength ` > 0, ε > 0 is the parameter
characterizing interfacial thickness and assumed to be sufficiently small, and ūε ∈ (−1, 1)
is the parameter equal to the constant background charge density. In the sequel will
investigate the limit ε → 0, assuming that uε depends on ε suitably. Of course, the
physical dimension of the underlying spatial domain is d = 3. The definition in (1.1) needs
to be supplemented with the “electroneutrality” constraint in order to make sense of the
last term in (1.1):

1

`d

∫
T`

u dx = ūε. (1.2)

One then wishes to characterize global energy minimizers of the energy in (2.1) for all `
sufficiently large. These global energy minimizers are expected to determine the ground
states of the corresponding physical system in a macroscopically large sample.

It is widely believed that as the value of ` is increased with all other parameters fixed,
the global energy minimizer of Eε should be either constant or spatially periodic, with period
approaching a constant independent of ` as ` → ∞. Proving such a crystallization result
would be one of the main challenges in the theory of energy-driven pattern formation and
is currently out of reach (for a recent review, see [1]), except for the case d = 1, ūε ∈ (−1, 1)
fixed and ε > 0 sufficiently small [2, 23, 27] (for some results in that direction in higher
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dimensions, see [7, 22, 29]). On the other hand, it is known that for ūε ∈ (−1, 1) fixed,
global energy minimizers are not constant as soon as ε � 1 and ` & 1 [3, 25]. This is in
contrast with the case ūε 6∈ (−1, 1), for which by direct inspection u = ūε is the unique
global minimizer of the energy. Thus, a transition from the trivial minimizer u = ūε to a
non-trivial, spatially non-uniform minimizer of Eε must occur for ε � 1 and ` & 1 fixed
as the value of ūε increases from ūε = −1 towards ūε = 0 (in view of the symmetry
exhibited by the energy when changing u → −u, it is sufficient to consider only the case
ūε ≤ 0). In fact, for d ≥ 2 non-trivial minimizers emerge at some ūε = −1 + δ with
ε . δ . ε2/3| ln ε|1/3 [6, 25], while for d = 1 they emerge for some ε . δ . ε1/2 [6, 24]. The
nature of the transition towards non-trivial minimizers is quite delicate and at present not
well understood.

In the absence of general results for non-trivial minimizers of Eε for ε . 1, ūε ∈ (−1, 1)
and ` � 1 in d ≥ 2, one can consider different asymptotic regimes that admit further
analytical characterization. One such regime was analyzed in [12], where the behavior of
the minimizers of Eε was studied in the limit ε→ 0 for ūε = −1+λε2/3| ln ε|1/3, with λ > 0
and ` > 0 fixed, in the case d = 2. In this regime, non-trivial minimizers are expected
to consist of well separated “droplets” of the minority phase, i.e., regions where u ' +1
surrounded by the sea of the majority phase where u ' −1, separated by narrow domain
walls of thickness ∼ ε. It was found that there exists an explicit critical value of λ = λc > 0
such that the minimizers of Eε are non-trivial for all λ > λc, while for λ ≤ λc the minimizers
are “asymptotically trivial”, namely, that the energy of the minimizers converges to that
of u = ūε, and the minimizer converges to u = ūε in a certain sense as ε → 0. Moreover,
the threshold value λc corresponding to the onset of non-trivial minimizers was found to
be independent of `, suggesting that the transition should persist to the macroscopic limit
` → ∞ with ε � 1 and ūε fixed (i.e., when commuting the order of the ε → 0 and
` → ∞ limits). The obtained non-trivial minimizers exhibit a kind of a homogenization
limit, with mass distributing uniformly on average throughout the domain. Furthermore,
by performing a two-scale expansion of the energy, one can make more precise conclusions
about the detailed properties of the minimizers and, in particular, formulate a variational
problem in the whole space that determines the placement of the connected components
of the minimizers in terms of the so-called renormalized energy, whose minimizers are
conjectured to concentrate on the vertices of a hexagonal lattice [13].

Here, we would like to understand how the transition to non-trivial minimizers happens
when ε → 0 and ` & 1 in the physical three-dimensional case. Therefore, from now on
we fix d = 3 throughout the rest of the paper. Once again, in this regime the minimizers
are expected to exhibit a two-phase character, with the minority phase occupying a small
fraction of space. To this end, we define

ūε := −1 + λε2/3 , (1.3)

where λ > 0 is fixed. Our main result is the following theorem.
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Theorem 1.1. Let ` > 0 and λ > 0, and let Eε be defined in (1.1) with ūε given by
(1.3). Then, there exists a universal constant λc > 0 such that if uε is a minimizer of
Eε(u) among all u ∈ H1(T`) satisfying (1.2), and µε ∈ M+(T`) is such that dµε(x) =
1
2ε
−2/3 (1 + sgnuε(x)) dx, we have as ε→ 0:

(i) µε ⇀ 0 in M(T`) if λ ≤ λc.

(ii) µε ⇀ µ̄ in M(T`), where dµ̄ = 1
2(λ− λc)dx, if λ > λc.

(iii) ε−4/3Eε(uε)→ min{λ2`3, λc(2λ− λc)`3}.

Thus, the onset of non-trivial minimizers in three space dimensions occurs sooner in
terms of 0 < 1+ūε � 1 than the corresponding transition in two dimensions. In particular,
cylindrical morphologies obtained by trivially extending the two-dimensional minimizers
into the third dimension are no longer global energy minimizers. One would, therefore,
expect that the emergent non-trivial minimizers consist of a collection of well separated
small droplets of the minority phase surrounded by the sea of the majority phase. Further-
more, the size and the distance between the droplets would scale differently (cf. [15]) from
those in two dimensions, and in contrast to the latter [12, 13] we can no longer conclude
that the droplets are nearly spherical. Still, we are able to express the shape and size of
the individual droplets in terms of the non-local isoperimetric problem in the whole space
that goes back to Gamow [4,11] (for details, see the following sections). In particular, this
allows us to obtain a quantitative estimate for the threshold λc, using balls as competitors
in the whole space problem and a recent quantitative non-existence result for the Gamow’s
liquid drop model [9].

Theorem 1.2. With the notation of Theorem 1.1, we have

3

4 3
√

2
≤ λc ≤

3

2 3
√

5
. (1.4)

Note that numerically the bound in Theorem 1.4 appears to be fairly tight: 0.5952 <
λc < 0.8773, with the lower bound to within 33% of the value of the upper bound. Note
that if the conjecture that the minimizers of Gamow’s liquid drop model are balls is true,
then the upper bound in Theorem 1.4 should in fact yield equality.

Our proof relies on our previous results obtained for the three-dimensional sharp inter-
face version of the Ohta-Kawasaki energy [15]. Together with the approach from [25, Sec-
tion 4], the result in Theorem 1.1 is obtained along the lines of the arguments in [12],
suitably adapted from the two-dimensional to the three-dimensional case. Note, however,
that the results in [15] cannot be directly combined with those of [25], since the sharp in-
terface energy studied in [15] does not include the effect of charge screening. In fact, there
is no transition from trivial to non-trivial minimizers in the unscreened sharp interface
energy. Therefore, as a first step towards the proof one needs to adapt the results of [15]
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to the case of screened sharp interface energy and obtain an asymptotic characterization
of its minimizers as ε→ 0.

As in [15], we separate the non-local energy into the near-field and far-field contri-
butions, with screening appearing explicitly in the latter. At the same time, the self-
interaction energy of the droplets turns out to be still well approximated by that of Gamow’s
liquid drop model. Combining the far-field with the near-field contributions to the energy
then allows to establish a Γ-convergence result for the screened sharp interface energy to
an energy functional which is quadratic in the limit charge density, with the notion of
convergence being the weak convergence of measures. Along the way, we establish uniform
estimates for the connected components of the minimizers similar to those in [15], which,
in turn, allows to characterize non-existence of nontrivial minimizers of the screened sharp
interface energy below the threshold for all ε sufficiently small.

Once the Γ-convergence result is established for the screened sharp interface energy, we
proceed as in [12] by introducing a piecewise-constant charge density associated with the
admissible configurations for the diffuse interface energy that eliminates the small devia-
tions of the charge density from their equilibrium values ±1 for the double-well potential
(for a more detailed explanation of the need of such a step, see the beginning of Sec. 2.2
in [12]). We then adapt the arguments of [12, Section 6] to obtain the corresponding Γ-
convergence result for the diffuse interface energy to the same quadratic functional in the
limit charge density as for the screened sharp interface energy. Finally, explicitly mini-
mizing the limit energy we obtain the main result of our paper contained in Theorem 1.1.
Furthermore, we relate the value of the threshold λc with the optimal energy per unit mass
for Gamow’s liquid drop model. In addition, we use recent results in [9, 10] characterizing
the minimizers of the latter problem to obtain sharp quantitative bounds on the value of
the threshold.

To summarize, our paper provides an extension of various recent results for the diffuse
interface Ohta-Kawasaki energy to the case of a macroscopic three-dimensional domain,
establishing a sharp transition from trivial to nontrivial minimizers in the asymptotic limit
of vanishingly thin interfaces. Most of the techniques used in our proofs are adaptations of
those that appeared in the earlier studies of this problem in different settings. The main
novelty of our results, however, is the way these arguments are combined to yield a non-
trivial scaling for the transition to nontrivial minimizers and the limit energy functional
for the three-dimensional Ohta-Kawasaki energy. To our knowledge, this is the first sharp
asymptotic result for this energy in the regime of strong compositional asymmetry and
large number of droplets (for the case of finitely many droplets, see [5]). We note that the
present lack of knowledge about the minimizers of Gamow’s liquid drop model prevents us
to go to the next order in a two-scale Γ-expansion to describe local interactions of droplets
via a “renormalized energy” [28]. In particular, it is not known at present whether the
minimizer per unit mass exists only for a unique value of the mass (this would be true if
minimizers were balls). Thus, further insights into the solution of Gamow’s model would
be needed to carry out the programme realized for the two-dimensional Ohta-Kawasaki
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energy in [13].
Our paper is organized as follows. In Sec. 2, we introduce the different energies appear-

ing in our study and state a number of results related to each of the associated variational
problems. Also in this section, we prove Theorem 2.2 that gives a quantitative lower bound
for the self-interaction energy per unit mass for Gamow’s liquid drop model. Then, in Sec. 3
we state the Γ-convergence result for the sharp interface energy in Theorem 3.2, followed by
a proof. Also in Sec. 3, we provide some further results about the connected components
of minimizers of the screened sharp interface energy, see Theorem 3.4 and Corollary 3.5.
Finally, in Sec. 4 we state and prove the corresponding Γ-convergence result for the diffuse
interface energy, see Theorem 4.1. The results in Theorems 1.1 and 1.2 are then obtained
as simple corollaries of the above theorems.

2 Setting

In this section, we introduce the basic notation used throughout the rest of the paper,
together with the assumptions and some technical results.

2.1 The diffuse interface energy

We begin by generalizing the diffuse energy functional in (1.1) to one involving an arbitrary
symmetric double-well potential W (u):

Eε(u) :=

∫
T`

(
ε2

2
|∇u|2 +W (u) +

1

2
(u− ūε)(−∆)−1(u− ūε)

)
dx, (2.1)

with W (u) satisfying [25]:

(i) W ∈ C2(R), W (u) = W (−u), and W ≥ 0,

(ii) W (+1) = W (−1) = 0 and W ′′(+1) = W ′′(−1) > 0,

(iii) W ′′(|u|) is monotonically increasing for |u| ≥ 1, lim|u|→∞W
′′(u) = +∞, and |W ′(u)| ≤

C(1 + |u|q), for some C > 0 and 1 < q < 5.

This energy is clearly well-defined and bounded on the admissible class

Aε :=

{
u ∈ H1(T`) :

1

`3

∫
T`

u dx = ūε

}
, (2.2)

with the non-local term interpreted, as usual, with the help of the Green’s function G0(x)
solving

−∆G0(x) = δ(x)− `−3,

∫
T`

G0(x) dx = 0 (2.3)

6



in D′(T`). Explicitly, the energy takes the form

Eε(u) =

∫
T`

(
ε2

2
|∇u|2 +W (u)

)
dx+

1

2

∫
T`

∫
T`

(u(x)− ūε)G0(x− y)(u(y)− ūε) dx dy,

(2.4)

noting that the last term in the right-hand side is well-defined by Young’s inequality.
Under the assumptions above, every critical point u ∈ Aε of Eε solves weakly the

Euler-Lagrange equation, which can be written as (see [25, Section 4])

−ε2∆u+W ′(u) + v = Λ, −∆v = u− ūε, (2.5)

where v ∈ H3(T`) is a zero-average solution of the second equation in (2.5) and Λ ∈ R is
the Lagrange multiplier satisfying

Λ =
1

`3

∫
T`

W ′(u) dx, (2.6)

as can be seen by integrating the first equation in (2.5) over T`. In particular, we have

v(x) =

∫
T`

G0(x− y)(u(y)− ūε)dy, (2.7)

and u, v ∈ C∞(T`), solving (2.5) classically [25, Section 4]. Also, by the direct method
of calculus of variations, minimizers of Eε are easily seen to exist for all choices of the
parameters.

2.2 The sharp interface energy with screening

For ε� 1, minimizers of Eε are expected to consist of functions which take values close to
±1, except for narrow transition regions of width of order ε [25]. As usual, we define the
energy of an optimal one-dimensional transition layer connecting u = ±1 [21]:

σ :=

∫ 1

−1

√
2W (s) ds > 0. (2.8)

We also define

κ :=
1√

W ′′(1)
> 0, (2.9)

characterizing the effect of charge screening appearing in the sharp interface version of the
energy Eε, which we introduce in the sequel. With some obvious modifications, the results
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of [25, Section 4] apply to Eε defined in (2.1), with the corresponding sharp interface energy
Eε defined as

Eε(u) :=
εσ

2

∫
T`

|∇u| dx+
1

2

∫
T`

(u− ūε)(−∆ + κ2)−1(u− ūε) dx, (2.10)

where u belongs to the admissible class

A := BV (T`; {−1, 1}). (2.11)

Specifically, in the considered scaling regime we have the following relation between the
two energies (see the following sections):

min
u∈Aε

Eε(u)

min
u∈A

Eε(u)
→ 1 as ε→ 0. (2.12)

Notice that the neutrality constraint in (1.2) is no longer present in the case of the sharp
interface energy.

The energy in (2.10) may be rewritten with the help of the Green’s function as

Eε(u) :=
εσ

2

∫
T`

|∇u| dx+
1

2

∫
T`

∫
T`

(u(x)− ūε)G(x− y)(u(y)− ūε) dx dy, (2.13)

where G solves

−∆G(x) + κ2G(x) = δ(x) in D′(T`). (2.14)

Notice that G has an explicit representation

G(x) =
1

4π

∑
n∈Z3

e−κ|x−n`|

|x− n`|
. (2.15)

In particular, we have

G(x) ' 1

4π|x|
|x| � 1, G(x) ≥ c ∀x ∈ T`, (2.16)

for some c > 0 depending on κ and `. Also, integrating (2.14) we get∫
T`

G(x)dx = κ−2. (2.17)

The latter allows us to rewrite the energy Eε in an equivalent form in terms of χ ∈
BV (T`; {0, 1}), where

χ(x) :=
1 + u(x)

2
x ∈ T`, (2.18)
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as

Eε(u) =
ε4/3λ2`3

2κ2
+εσ

∫
T`

|∇χ| dx− 2ε2/3λ

κ2

∫
T`

χdx+2

∫
T`

∫
T`

G(x−y)χ(x)χ(y) dx dy,

(2.19)

where we also used (1.2).
We now introduce a version of the energy Eε written in terms of the rescaling

χ̃(x) := χ(`x/`ε) x ∈ T`ε , `ε :=

(
4

σε

)1/3

`. (2.20)

With this definition we have χ̃ ∈ Ã`ε , where

Ã`ε := BV (T`ε ; {0, 1}), (2.21)

for every χ ∈ A, and Eε(χ) = Ẽ`ε(χ̃), with

Ẽ`ε(χ̃) :=
ε4/3λ2`3

2κ2
− ε5/3σλ

2κ2

∫
T`ε

χ̃ dx

+

(
ε5/3σ5/3

42/3

)[∫
T`ε

|∇χ̃| dx+
1

2

∫
T`ε

χ̃
(
−∆ + 4−2/3ε2/3σ2/3κ2

)−1
χ̃ dx

]
. (2.22)

Introducing Gε, which solves

−∆Gε(x) + 4−2/3κ2ε2/3σ2/3Gε(x) = δ(x) in T`ε , (2.23)

we can then express the energy Ẽ`ε as

Ẽ`ε(χ̃) :=
ε4/3λ2`3

2κ2
− ε5/3σλ

2κ2

∫
T`ε

χ̃ dx

+

(
ε5/3σ5/3

42/3

)[∫
T`ε

|∇χ̃| dx+
1

2

∫
T`ε

Gε(x− y)χ̃(x)χ̃(y) dx dy

]
. (2.24)

Note that, as in (2.15), we have the following representation for Gε:

Gε(x) =
1

4π

∑
n∈Z3

e−4−1/3ε1/3σ1/3κ|x−n`ε|

|x− n`ε|
. (2.25)
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2.3 The whole space energy

As was shown by us in [15], in the absence of screening, i.e., with κ = 0 and u ∈ A also
satisfying (1.2), the asymptotic behavior of the minimizers of Eε in (2.10) with ūε satisfying
(1.3) can be expressed in terms of those for the energy defined on the whole of R3:

Ẽ∞(χ̃) :=

∫
R3

|∇χ̃| dx+
1

8π

∫
R3

∫
R3

χ̃(x)χ̃(y)

|x− y|
dx dy, (2.26)

which is well defined in the admissible class

Ã∞ := BV (R3; {0, 1}). (2.27)

In particular, the optimal self-energy per unit volume of the minority phase is

f∗ := inf
χ̃∈Ã∞

Ẽ∞(χ̃)∫
R3 χ̃ dx

. (2.28)

Note that within the nuclear physics context, this is precisely the dimensionless form of the
celebrated Gamow’s liquid drop model of the atomic nucleus [11] (for a recent mathematical
overview, see [4]). In particular, the value of f∗ corresponds to the energy per nucleon in
the tightest bound nucleus.

The relationship between Eε and Ẽ∞ can be seen formally by passing to the limit ε→ 0
in (2.24) with χ̃ taken to be the characteristic function of a fixed bounded set restricted to
T`ε . Then we have(

42/3

ε5/3σ5/3

)(
Ẽ`ε(χ̃)− ε4/3λ2`3

2κ2

)
→ −λf

∗

λc

∫
R3

χ̃ dx+ Ẽ∞(χ̃), (2.29)

where χ̃ was extended by zero to the whole of R3, and we defined

λc := 2−1/3σ2/3κ2f∗. (2.30)

The following result was recently established about minimizers of the problem in the
whole space [9, 15].

Theorem 2.1. There exists a bounded, connected open set F ∗ ⊂ R3 with smooth boundary
such that

f∗ =
Ẽ∞(χ̃F ∗)∫
R3 χ̃F ∗ dx

, (2.31)

where χF ∗ is the characteristic function of the set F ∗.
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It has been conjectured that the minimizer of Ẽ∞ with fixed mass is given by a ball
whenever such a minimizer exists [5]. Therefore, taking a ball of radius R as a test function
in (2.28) and optimizing in R, one obtains an estimate

f∗ ≤ 35/3 · 2−2/3 · 5−1/3. (2.32)

The above conjecture would imply that the inequality in (2.32) is in fact an equality.
Proving such a result is a difficult hard analysis problem that currently appears to be out
of reach. Nevertheless, we can establish a first quantitative lower bound for the value of
f∗, using equipartition of energy of F ∗ established in [10] and a quantitative upper bound
on |F ∗| obtained in [9]. Note that the resulting lower bound equals about 67% of the upper
bound in (2.32). This is one of the main results of the present paper.

Theorem 2.2. We have

f∗ ≥ 35/3

4
. (2.33)

Proof. Let F ∗ be a minimizer from Theorem 2.1, and write

f∗ =
P (F ∗) + V (F ∗)

|F ∗|
, (2.34)

where P (F ∗) is the perimeter of F ∗ and V (F ∗) is the Coulombic self-energy of F ∗. By the
result from [10], the energy exhibits a kind of equipartition

V (F ∗) =
1

2
P (F ∗), (2.35)

which can be easily seen by considering the sets λF ∗ as competitors for f∗ and taking
advantage of the homogeneity of P and V with respect to dilations. Thus, we have

f∗ =
3P (F ∗)

2|F ∗|
. (2.36)

Therefore, applying the isoperimetric inequality yields

f∗ ≥
(

243π

2|F ∗|

)1/3

. (2.37)

The proof is then concluded by recalling the quantitative upper bound |F ∗| ≤ 32π from
[9].

11



2.4 The limit energy

For µ ∈M+(T`) ∩H−1(T`), define

E0(µ) :=
λ2`3

2κ2
− 2

κ2
(λ− λc)

∫
T`

dµ+ 2

∫
T`

∫
T`

G(x− y)dµ(x)dµ(y). (2.38)

Note that µ ∈ M+(T`) ∩ H−1(T`) implies that µ is a non-negative Radon measure that
has bounded Coulombic energy:∫

T`

∫
T`

G(x− y) dµ(x) dµ(y) <∞. (2.39)

where G is the screened Coulombic kernel from (2.15). The converse is also true, i.e., a pos-
itive Radon measure with bounded Coulombic energy defines a bounded linear functional
on H1(T`). This fact follows from the following lemma, whose proof is a straightforward
adaptation of the proof of [12, Lemma 3.2] in two dimensions. In particular, it allows to
extend the definition of E0 to arbitrary positive Radon measures on T`, with E0(µ) < +∞
if and only if µ ∈ H−1(T`).

Lemma 2.3. Let µ ∈M+(T`) and let (2.39) hold. Then

(i) µ ∈ H−1(T`), in the sense that it can be extended to a bounded linear functional over
H1(T`).

(ii) If

v(x) :=

∫
T`

G(x− y) dµ(y), (2.40)

then v ∈ H1(T`). Furthermore, v solves

−∆v + κ2v = µ, (2.41)

weakly in H1(T`), and

∇v(x) =

∫
T`

∇G(x− y) dµ(y), (2.42)

in the sense of distributions.

(iii) If v is as in (ii), we have κ2
∫
T`
v dx =

∫
T`
dµ and∫

T`

∫
T`

G(x− y) dµ(x) dµ(y) =

∫
T`

(
|∇v|2 + κ2v2

)
dx. (2.43)
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According to Lemma 2.3, the energy E0 may be equivalently rewritten in terms of the
associated potential v in (2.40) as

E0(µ) =
λ2`3

2κ2
− 2(λ− λc)

∫
T`

v dx+ 2

∫
T`

(
|∇v|2 + κ2v2

)
dx, (2.44)

and minimizing E0(µ) over µ ∈ M+(T`) ∩ H−1(T`) is the same as minimizing the right-
hand side of (2.44) with respect to all v ∈ H1(T`) such that v ≥ 0 in T` and −∆v+ κ2v ∈
M+(T`). By inspection, the latter is minimized by v = v̄, where

v̄ =

{
0, λ ≤ λc,

1
2κ2

(λ− λc), λ > λc.
(2.45)

In terms of the measures, we can state this result as follows:

Proposition 2.4. The energy E0(µ) is minimized by a unique measure µ̄ among all µ ∈
M+(T`) ∩ H−1(T`), with µ̄ = 0 for all λ ≤ λc, and dµ̄ = 1

2(λ − λc)dx for λ > λc,
respectively. Moreover, we have

E0(µ̄) =

{
λ2`3

2κ2
, λ ≤ λc,

λc(2λ−λc)`3

2κ2
, λ > λc,

(2.46)

and (2.41) is solved by v(x) = v̄.

3 Sharp interface energy Eε

In this section, we consider the sharp-interface functional Eε defined in (2.10) in the limit
ε→ 0 with ūε given by (1.3) and positive σ, λ, κ, ` fixed. For a given uε ∈ A, we introduce
a measure µε that is continuous with respect to the Lebesgue measure on T` and whose
density is an appropriately rescaled characteristic function of the minority phase:

dµε(x) :=
1

2
ε−2/3(1 + uε(x))dx. (3.1)

Note that by definition the measure µε is non-negative. We also introduce the potential vε
via

−∆vε + κ2vε = µε in T`. (3.2)

Our first result establishes compactness of sequences with bounded energy after a suitable
rescaling.
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Theorem 3.1 (Equicoercivity). Let (uε) ∈ A be such that

lim sup
ε→0

ε−4/3Eε(uε) < +∞, (3.3)

and let µε and vε be defined in (3.1) and (3.2), respectively. Then, up to extraction of a
subsequence, we have

µε ⇀ µ in M(T`), vε ⇀ v in H1(T`), (3.4)

as ε→ 0, for some µ ∈M+(T`) ∩H−1(T`) and v ∈ H1(T`) satisfying

−∆v + κ2v = µ in T`. (3.5)

Proof. Inserting (3.1) into (2.10) and dropping the perimeter term, following the argument
of [25] we arrive at (see also (2.19))

Eε(uε) ≥
λ2`3

2κ2
− 2λ

κ2

∫
T`

dµε(x) + 2

∫
T`

∫
T`

G(x− y)dµε(x)dµε(y), (3.6)

where we used (2.17) and (1.3) and took into account the translational invariance of the
problem in T`. By (2.16) we get

Eε(uε) ≥ −
2λ

κ2
µε(T`) + 2cµ2

ε(T`), (3.7)

where we again recall that µε is nonnegative by definition. It then follows that

µε(T`) < C, (3.8)

for some constant C > 0 independent of ε, which implies that µε ⇀ µ for a subsequence.
The above considerations together with Lemma 2.3(iii) and (3.3) show that∫

T`

(
|∇vε|2 + κ2v2

ε

)
dx =

∫
T`

∫
T`

G(x− y)dµε(x)dµε(y) < C, (3.9)

and upon extraction of a further subsequence we get vε ⇀ v in H1(T`). Finally, (3.5)
follows by passing to the limit in (3.2).

We now proceed to the main result of this section which establishes the Γ-limit of the
screened sharp interface energy, similar to its two-dimensional analog in [12, Theorem 1].

Theorem 3.2 (Γ-convergence of Eε). As ε→ 0 we have

ε−4/3Eε
Γ
⇀ E0, (3.10)

with respect to the weak convergence of measures. More precisely, we have

14



i) Lower bound: Suppose that (uε) ∈ A and let µε be defined as in (3.1), and suppose
that

µε ⇀ µ in M(T`), (3.11)

as ε→ 0, for some µ ∈M`
+(T`). Then

lim inf
ε→0

ε−4/3Eε(uε) ≥ E0(µ). (3.12)

ii) Upper bound: Given µ ∈M+(T`), there exists (uε) ∈ A such that for the correspond-
ing µε as in (3.1) we have

µε ⇀ µ in M(T`), (3.13)

as ε→ 0, and

lim sup
ε→0

ε−4/3Eε(uε) ≤ E0(µ). (3.14)

Proof. Assume first that µ ∈M+(T`)∩H−1(T`), so that E0(µ) < +∞. As in the proof of
Propositions 5.1 and 5.2 in [15], we separate the contributions of the near-field and far-field
interaction, i.e. for 0 < ρ ≤ 1

4 we write

Gρ(x) = ηρ(x)G(x), Hρ(x) := G(x)−Gρ(x), (3.15)

where ηρ(x) is a smooth cutoff function depending on |x| which is monotonically increasing
from 0 to 1 as |x| goes from 0 to ρ, with ηρ(x) = 0 for all |x| < 1

2ρ and ηρ(x) = 1
for all |x| > ρ. With the help of (2.19), for any uε ∈ A we decompose the energy as

Eε = E
(1)
ε + E

(2)
ε , where

ε−4/3E(1)
ε (uε) =

λ2`3

2κ2
− 2λ

κ2

∫
T`

dµε(x) + 2

∫
T`

∫
T`

Gρ(x− y) dµε(x) dµε(y),

ε−4/3E(2)
ε (uε) = ε−1/3σ

∫
T`

|∇χε| dx+ 2ε−4/3

∫
T`

∫
T`

Hρ(x− y)χε(x)χε(y) dx dy,

(3.16)

where χε is as in (2.18) with u replaced with uε. The term E
(1)
ε is continuous with respect

to the weak convergence of measures, hence∫
T`

∫
T`

Gρ(x− y) dµε(x) dµε(y)→
∫
T`

∫
T`

Gρ(x− y) dµ(x) dµ(y) as ε→ 0. (3.17)

The proof of the lower bound for E
(2)
ε follows with similar arguments as in [15]. After the

rescaling in (2.20), one can write

ε−4/3E(2)
ε (uε) =

(
ε1/3σ5/3

42/3

)[∫
T`ε

|∇χ̃ε|dx+
1

2

∫
T`ε

∫
T`ε

H̃ε
ρ(x− y)χ̃ε(x)χ̃ε(y) dx dy

]
,

(3.18)
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where χ̃ε(x) := χε(x`/`ε) and

H̃ε
ρ(x) := (1− ηρ(x`/`ε))Gε(x). (3.19)

Observe that by (2.25) and monotonicity of ηρ(x) in |x| we have

H̃ε
ρ(x) ≥ (1− ρ)Γ#

ρ0(x),

where Γ#
ρ0(x) := (1 − ηρ0(x))Γ#(x) and Γ#(x) := 1

4π|x| is the restriction of the Newton
potential on the torus, for any ρ0 > 0 and all ε small enough depending only on κ, σ and
ρ0. The rest of the proof follows exactly as in [15].

Finally, if µ 6∈ H−1(T`), then E0(µ) = +∞ and the upper bound is trivial, while the
lower bound follows via a contradiction argument from the compactness established in
Theorem 3.1.

As a direct consequence of Theorems 3.1 and 3.2, we have the following characterization
of the minimizers of the sharp interface energy in the limit ε→ 0.

Corollary 3.3. Let (uε) ∈ A be minimizers of Eε. Let µε be defined in (3.1) and let vε be
the solution of (3.2) respectively. Then as ε→ 0, we have

µε ⇀ µ̄ in M(T`), vε ⇀ v̄ in H1(T`), (3.20)

where µ̄ and v̄ are as in Proposition 2.4.

We note that for λ � λc the minimum energy per unit volume for minimizers in
Proposition 3.3 approaches asymptotically to that of the unscreened sharp interface energy
studied in [15], indicating that the presence of an additional screening does not affect the
limit behavior of the energy at higher densities than those appearing in (1.3). We would
thus expect that the same result would still hold for the sharp interface energy even for
1 + ūε = o(1) as ε → 0, consistently with a recent result for the sharp interface energy
without screening [8].

We conclude by proving an analog of [15, Theorem 3.6] that provides uniform bounds on
the diameter of the connected components of minimizers of Eε as ε→ 0, and convergence
of most of the connected components to minimizers of Gamow’s model per unit mass.

Theorem 3.4 (Minimizers: droplet structure). For λ > 0, let (uε) ∈ A be regular repre-
sentatives of minimizers of Eε, and assume that the sets {uε = +1} are non-empty for ε
sufficiently small. Let Nε be the number of connected components of the set {uε = +1}, let
χε,k ∈ BV (R3; {0, 1}) be the characteristic function of the k-th connected component of the
support of the periodic extension of {uε = +1} to the whole of R3 modulo translations in
Z3, and let xε,k ∈ supp(χε,k). Then there exists ε0 > 0 such that the following properties
hold:
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i) There exist constants C, c > 0 depending only on σ, κ, λ and ` such that, for all
ε ≤ ε0 we have

0 < vε ≤ C and

∫
R3

χε,k dx ≥ c ε, (3.21)

where vε solves (3.2). Moreover we have

supp(χε,k) ⊆ BCε1/3(xε,k). (3.22)

ii) If λ > λc, where where λc is given by (2.30), there exist constants C, c > 0 as above
such that, for all ε ≤ ε0 we have

c(λ− λc)ε−1/3 ≤ Nε ≤ C(λ− λc)ε−1/3. (3.23)

Moreover, there exists Ñε ≤ Nε with Ñε/Nε → 1 as ε → 0 and a subsequence
εn → 0 such that for every kn ≤ Ñεn the following holds: After possibly relabeling the
connected components, we have

χ̃n → χ̃ in L1(R3), (3.24)

where χ̃n(x) := χεn,kn(ε
1/3
n (x+xεn,kn)), and χ̃ ∈ Ã∞ is a minimizer of the right-hand

side of (2.28).

Proof. The proof can be obtained as in [15, Theorem 3.6], with some simplifications due
to the absence of a volume constraint. We outline the necessary modifications below. As
stated above, the constants in the estimates below depend on σ, κ, λ and `, and may
change from line to line.

For ũε(x) := uε(`x/`ε), we define F ⊂ T`ε to be the set {ũε = +1}, which by our as-
sumption is non-empty for ε sufficiently small. Then we can write vε(x) = (σ/4)2/3vF (`x/`ε),
where vF (x) :=

∫
T`ε

Gε(x − y)χF (y)dy, and Gε is defined in (2.25). The first step in the

proof is to obtain an L∞-bound on the potential vF analogous to the one in [15, Lemma
6.3]:

0 < vF ≤ Cε−2/9. (3.25)

Observe that by strict positivity of Gε we clearly have vF > 0. On the other hand, the
upper bound follows exactly as in [15, Lemma 6.3], due to the fact that Gε(x) ≤ C/|x| for
some C > 0, since

Gε(x) =
`

`ε
G

(
`x

`ε

)
=

1

4π

∑
n∈Z3

e−κ`|(x/`ε)−n`|

|x− n`|
, (3.26)
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in view of (2.15).
Next, we need to estimate the gradient of vF pointwise in terms vF itself, as in [15,

Lemma 6.5], which relies on [15, Eq. (6.15)]. It is easy to see that the latter estimate still
holds in the present setting, with the constants depending on κ and `. The proof then
follows as in [15], with a few simplifications due to positivity of G. Also, since vF satisfies

−∆vF +
(εσ

4

)2/3
κ2vF =

(σ
4

)2/3
χF in T`ε , (3.27)

by positivity of vF we have that vF is subharmonic outside F . Thus, vF attains its global
maximum in T`ε for some x̄ ∈ F , and the analog of [15, Eq. (6.19)] holds true:

vF (x) ≥ 3

4
vF (x̄)− C for all x ∈ Br(x̄), (3.28)

for some C > 0 and r > 0.
Proceeding as in [15, Lemma 6.7 and Proposition 6.2], we establish a lower density

estimate for F : Given x0 ∈ F and letting F0 be the connected component of F containing
x0, we have

|F0 ∩Br(x0)| ≥ cr3 for all r ≤ C min
(
1, ‖vF ‖−1

∞
)
≤ Cε2/9, (3.29)

for some c, C > 0, where the last inequality follows from (3.25). The assertion in (3.21)
then follows as in [15, Theorem 6.9] from (3.25), (3.28) and (3.29). The idea of the proof
in [15] is to find a suitable competitor F ′ which is obtained by cutting from F a ball of
radius independent of ε, centered at the point where the potential vF attains its maximum.
Compared to [15], the proof here is simpler since we don’t have a volume constraint, so
that we can allow competitors with smaller volume than F . Arguing by contradiction, if
the maximum of vF is large, then necessarily the density of F in the ball has to be small,
otherwise the energy of F ′ would be less that the energy of F . However, this contradicts
the density estimate in (3.29). Finally, exactly as in [15, Lemma 6.11], the bound on the
potential and the density estimate (3.29) also imply the diameter bound

diam(F0) ≤ C, (3.30)

for some constant C > 0, which gives (3.22). This concludes the proof of part i).

The proof of part ii) follows as in the proof of [15, Theorem 3.6], with the exception that
the estimate on Nε in (3.23) now follows from (3.21) and the fact that, recalling Corollary
3.3,

lim
ε→0

∫
T`

dµε = µ̄(T`) =
1

2
(λ− λc), (3.31)

where µ̄ is as in Proposition 2.4.
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The results obtained in Theorem 3.4 allow us to establish a sharp transition from trivial
to non-trivial minimizers at the level of the sharp interface energy near λ = λc for all ε� 1.

Corollary 3.5. There exists ε0 = ε0(σ, κ, λ, `) > 0 such that if λc is given by (2.30), then:

i) For any λ < λc and ε < ε0 we have that u = −1 is the unique minimizer of Eε in A.

ii) For λ > λc and ε < ε0 we have that u = −1 is not a minimizer of Eε in A.

Proof. Since the statement in ii) follows immediately from Corollary 3.3, we only need to
demonstrate i). The strategy is analogous to the one used in the proof of [25, Proposition
3.2]. For λ < λc, let uε be a minimizer of Eε over A, and assume, by contradiction, that
uε 6= −1 for a sequence of ε→ 0. Let χε,k be as in Theorem 3.4. By (2.15) we have

Eε(uε) ≥
ε4/3λ2`3

2κ2
+

Nε∑
k=1

(
εσ

∫
R3

|∇χε,k|dx−
2ε2/3λ

κ2

∫
R3

χε,kdx

+
1

2π

∫
R3

∫
R3

e−κ|x−y|

|x− y|
χε,k(x)χε,k(y) dx dy

)
. (3.32)

At the same time, since by Theorem 3.4 the diameter of the support of χε,k is bounded
above by Cε1/3, for every δ > 0 we have e−κ|x−y| ≥ 1− δ for all ε sufficiently small and all
x, y ∈ supp(χε,k). Introducing χ̃ε,k(x) := χε,k(`εx/`) as in (2.20), we can then write

Eε(uε) ≥
ε4/3λ2`3

2κ2
− ε5/3σλ

2κ2

Nε∑
k=1

∫
R3

χ̃ε,kdx

+
ε5/3σ5/3

42/3

Nε∑
k=1

(∫
R3

|∇χ̃ε,k|dx+
1− δ
8π

∫
R3

∫
R3

χ̃ε,k(x)χ̃ε,k(y)

|x− y|
dx dy

)

≥ ε4/3λ2`3

2κ2
− ε5/3σλ

2κ2

Nε∑
k=1

∫
R3

χ̃ε,kdx+
ε5/3σ5/3(1− δ)

42/3

Nε∑
k=1

Ẽ∞(χ̃ε,k). (3.33)

Now we substitute the definitions of f∗ and λc in (2.28) and (2.30), respectively, into
(3.33). This yields

Eε(uε) ≥
ε4/3λ2`3

2κ2
+
ε5/3σ ((1− δ)λc − λ)

2κ2

Nε∑
k=1

∫
R3

χ̃ε,kdx. (3.34)

In particular, for λ < λc one can choose δ small enough, so that Eε(uε) > ε4/3λ2`3/(2κ2) =
Eε(−1) for all ε sufficiently small, contradicting minimality of uε.
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4 Diffuse interface energy Eε
We now consider the diffuse-interface functional Eε defined in (1.1) in the limit ε→ 0 with,
as before, ūε given by (1.3) and positive σ, λ, κ, ` fixed.

Let

dµ0
ε(x) :=

1

2
ε−2/3

(
1 + u0

ε(x)
)
dx, (4.1)

where

u0
ε(x) :=

{
+1 if uε(x) > 0,

−1 if uε(x) ≤ 0,
(4.2)

and let v0
ε satisfy

−∆v0
ε + κ2v0

ε = µ0
ε in T`. (4.3)

With this notation, we are now in the position to state the main technical result of this
paper.

Theorem 4.1 (Equicoercivity and Γ-convergence of Eε). For λ > 0 and ` > 0, let Eε be
defined by (2.1) with W satisfying the assumptions of Sec. 2.1, let ūε given by (1.3), and
let σ and κ be given by (2.8) and (2.9), respectively. Then, as ε→ 0 we have

ε−4/3Eε
Γ
⇀ E0(µ), (4.4)

where µ ∈M+(T`) ∩H−1(T`). More precisely, we have

i) Compactness and lower bound: Let (uε) ∈ Aε be such that lim supε→0 ‖uε‖L∞(T`) ≤ 1
and

lim sup
ε→0

ε−4/3Eε(uε) < +∞. (4.5)

Then, up to extraction of a subsequence, we have

µ0
ε ⇀ µ in M(T`), v0

ε ⇀ v in H1(T`), (4.6)

as ε→ 0, where µ ∈M+(T`) ∩H−1(T`) and v ∈ H1(T`) satisfy

−∆v + κ2v = µ in T`. (4.7)

Moreover, we have

lim inf
ε→0

ε−4/3Eε(uε) ≥ E0(µ). (4.8)
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ii) Upper bound: Given µ ∈ M+(T`) ∩ H−1(T`) and v ∈ H1(T`) solving (4.7), there
exist (uε) ∈ Aε such that for the corresponding µ0

ε, v
0
ε as in (4.1) and (4.3) we have

µ0
ε ⇀ µ in M(T`), v0

ε ⇀ v in H1(T`), (4.9)

as ε→ 0, and

lim sup
ε→0

ε−4/3Eε(uε) ≤ E0(µ). (4.10)

Proof. As in [25], the basic strategy is to relate the minimization problem for Eε to that
for Eε and apply the results in Theorems 3.1 and 3.2. The proof relies on the fact, first
observed in [25], that the energy Eε is asymptotically equivalent to Eε in the following
sense: For any δ > 0 and uε ∈ Aε satisfying some mild technical conditions (see below)
there is ũε ∈ A such that

Eε[ũε] ≤ (1 + δ)Eε(uε), (4.11)

for all ε � 1, and, conversely, for any ũε ∈ A, again, satisfying some mild technical
conditions, there is uε ∈ Aε such that

Eε[uε] ≤ (1 + δ)Eε(ũε), (4.12)

for all ε� 1. The proof then proceeds exactly as in the two-dimensional case [12, Theorem
1], with modifications appropriate to three space dimensions. We outline the key differences
below.

For (4.11) to hold, we need to verify the assumptions of [25, Proposition 4.2], which
are equivalent to checking that ‖uε‖∞ → 1, Eε(uε) → 0 and ‖vε‖∞ → 0 as ε → 0, where
vε(x) :=

∫
T`
G0(x−y)(uε(y)−ūε)dy. The first and second conditions are clearly satisfied by

the assumptions of the theorem. To check the third condition, we note that the non-local
part of the energy may be written in terms of vε as

1

2

∫
T`

∫
T`

(uε(x)− ūε)G0(x− y)(uε(y)− ūε) dx dy =
1

2

∫
T`

|∇vε|2dx. (4.13)

Since
∫
T`
vε(x) dx = 0 we have by Poincaré’s inequality that the right-hand side of (4.13) is

bounded below by a multiple of ‖vε‖22. In turn, the latter is bounded below by a multiple
of ‖vε‖5∞, in view of the fact that by elliptic regularity we have ‖∇vε‖∞ ≤ C for some
C > 0 depending only on `, for all ε� 1. Therefore, from Eε(uε)→ 0 we also obtain that
‖vε‖∞ → 0 as ε → 0. Thus, by (4.11) ũε satisfies the assumptions of Theorem 3.1, and
so there exists µ ∈ M(T`) such that, upon extraction of subsequences, µε ⇀ µ in M(T`),
where the measure µε defined by (3.1) with uε replaced by ũε. For those subsequences,
Theorem 3.2 holds true for µε as well.

21



Now, from the construction of ũε in the proof of [25, Lemma 4.1] we know that ũε(x) =
u0
ε(x) for all x ∈ T` such that |uε(x)| > 1 − δ2. Hence from the bound on Eε(uε) and the

assumptions on W we get that ‖ũε− u0
ε‖1 ≤ Cε4/3δ−4 for some C > 0 and all ε� 1. This

implies that µ0
ε ⇀ µ in M(T`) as well ε → 0. Together with the conclusions of Theorems

3.1 and 3.2, this gives the compactness and the lower bound statement of Theorem 4.1, in
view of arbitrariness of δ.

For (4.12) to hold, we need to verify the assumptions of [25, Proposition 4.3] on ũε ∈ A,
namely, that the connected components of the support of {ũε = +1} are smooth and at
least εα apart for some α ∈ [0, 1), have boundaries whose curvature is bounded by ε−α,
and that ‖ṽε‖∞ → 0 as ε→ 0, where ṽε(x) :=

∫
T`
G(x− y)(ũε(y)− ūε)dy. Clearly the first

two assumptions hold true for the recovery sequence in the proof of Theorem 3.2 with any
α ∈ (1

3 , 1), provided that ε� 1. The third assumption is satisfied for all ε� 1, in view of
the fact that the non-local part of the sharp interface energy can be written as

1

2

∫
T`

∫
T`

(ũε(x)− ūε)G0(x− y)(ũε(y)− ūε) dx dy =
1

2

∫
T`

(
|∇ṽε|2 + κ2ṽ2

ε

)
dx, (4.14)

and the desired estimate follows from Eε(ũε) → 0 just like in the case of the diffuse
interface energy. Thus, the proof of the upper bound is concluded by taking the functions
uε appearing in (4.12), associated with the recovery sequence (ũε) from Theorem 3.2, once
again, in view of arbitrariness of δ.

Similarly to the sharp interface energy, as a direct consequence of Theorem 4.1 we have
the following characterization of the minimizers of the diffuse interface energy in the limit
ε→ 0.

Corollary 4.2. Under the assumptions of Theorem 4.1, let (uε) ∈ Aε be minimizers of
Eε. Let µ0

ε be defined in (4.1) and v0
ε be the solution of (4.3), respectively. Then as ε→ 0,

we have

µ0
ε ⇀ µ̄ in M(T`), v0

ε ⇀ v̄ in H1(T`), (4.15)

where µ̄ and v̄ are as in Proposition 2.4.

We emphasize that the limit behavior of the minimal energy obtained in (4.2) differs
from that of the unscreened sharp interface energy one would naively associate with Eε.
In particular, the minimal energy exhibits a threshold behavior, contrary to that of the
minimizers of the unscreened sharp interface energy studied in [8, 15].

Proof of Theorems 1.1 and 1.2. The statement of Theorem 1.1 is simply the restatement
of Corollary 4.2 that does not specify the precise values of the constants appearing there.

In turn, the statement of Theorem 1.2 uses the explicit values of σ = 2
√

2
2 and κ = 1√

2
for

(1.1), together with the bounds on f∗ obtained in (2.32) and (2.33).
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[15] H. Knüpfer, C. B. Muratov, and M. Novaga. Low density phases in a uniformly
charged liquid. Comm. Math. Phys., 345:141–183, 2016.

[16] J. M. Lattimer, C. J. Pethick, D. G. Ravenhall, and D. Q. Lamb. Physical properties
of hot, dense matter: The general case. Nucl. Phys. A, 432:646–742, 1985.

[17] C. Le Bris and P.-L. Lions. From atoms to crystals: a mathematical journey. Bull.
Amer. Math. Soc. (N.S.), 42:291–363, 2005.

[18] E. H. Lieb. Thomas-Fermi and related theories of atoms and molecules. Rev. Mod.
Phys., 53:603–641, 1981.

[19] J. Lu and F. Otto. Nonexistence of a minimizer for Thomas-Fermi-Dirac-von
Weizsäcker model. Comm. Pure Appl. Math., 67:1605–1617, 2014.

[20] T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba. Nuclear
“pasta” structures and the charge screening effect. Phys. Rev. C, 72:015802, 2005.

[21] L. Modica. The gradient theory of phase transitions and the minimal interface crite-
rion. Arch. Rational Mech. Anal., 98:123–142, 1987.

[22] M. Morini and P. Sternberg. Cascade of minimizers for a nonlocal isoperimetric prob-
lem in thin domains. SIAM J. Math. Anal., 46:2033–2051, 2014.

[23] S. Müller. Singular perturbations as a selection criterion for periodic minimizing
sequences. Calc. Var. PDE, 1:169–204, 1993.

[24] C. B. Muratov. Theory of domain patterns in systems with long-range interactions of
Coulomb type. Phys. Rev. E, 66:066108 pp. 1–25, 2002.

[25] C. B. Muratov. Droplet phases in non-local Ginzburg-Landau models with Coulomb
repulsion in two dimensions. Comm. Math. Phys., 299:45–87, 2010.

24



[26] T. Ohta and K. Kawasaki. Equilibrium morphologies of block copolymer melts. Macro-
molecules, 19:2621–2632, 1986.

[27] X. Ren and J. Wei. On energy minimizers of the diblock copolymer problem. Interfaces
Free Bound., 5:193–238, 2003.

[28] N. Rougerie and S. Serfaty. Higher dimensional Coulomb gases and renormalized
energy functionals. Comm. Pure Appl. Math., 69:0519–0605, 2016.

[29] D. Shirokoff, R. Choksi, and J.-C. Nave. Sufficient conditions for global minimality of
metastable states in a class of non-convex functionals: A simple approach via quadratic
lower bounds. J. Nonlinear Sci., 25:539–582, 2015.

[30] E. Spadaro. Uniform energy and density distribution: diblock copolymers’ functional.
Interfaces Free Bound., 11:447–474, 2009.
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